ArticleOriginal scientific text

Title

A relatively free topological group that is not varietal free

Authors 1, 2

Affiliations

  1. School of Mathematical and Computing Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
  2. Department of Mathematical Sciences, Faculty of Science, Ehime University, Matsuyama 790, Japan

Abstract

Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.

Keywords

relatively free topological group, variety of topological groups, free zero-dimensional topological group, varietal free topological group

Bibliography

  1. A. V. Arhangel'skiĭ [A. V. Arkhangel'skiĭ], Any topological group is a quotient group of a zero-dimensional topological group, Soviet. Math. Dokl. 23 (1981), 615-618.
  2. A. V. Arhangel'skiĭ [A. V. Arkhangel'skiĭ], Classes of topological groups, Russian Math. Surveys 36 (1981), 151-174.
  3. M. S. Brooks, S. A. Morris and S. A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. 18 (1973), 191-197.
  4. W. W. Comfort and J. van Mill, On the existence of free topological groups, Topology Appl. 29 (1988), 245-265.
  5. R. Engelking, General Topology, PWN, Warszawa, 1977.
  6. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, 2nd ed. Springer, 1979.
  7. K. H. Hofmann, An essay on free compact groups, in: Lecture Notes in Math. 915, Springer, 1982, 171-197.
  8. H. J. K. Junnila, Stratifiable pre-images of topological spaces, in: Topology (Budapest 1978), Colloq. Math. Soc. János Bolyai 23, North-Holland, 1980, 689-703.
  9. S. Mac Lane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, 1971.
  10. A. A. Markov, On free topological groups, Dokl. Akad. Nauk SSSR 31 (1941), 299-301 (in Russian).
  11. A. A. Markov, Three papers on topological groups, Amer. Math. Soc. Transl. 30 (1950), 120 pp.
  12. S. A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145-160.
  13. S. A. Morris, Varieties of topological groups and left adjoint functor, J. Austral. Math. Soc. 16 (1973), 220-227.
  14. S. A. Morris, Varieties of topological groups. A survey, Colloq. Math. 46 (1982), 147-165.
  15. S. A. Morris, Free abelian topological groups, in: Categorical Topology (Toledo, Ohio, 1983), Heldermann, 1984, 375-391.
  16. H. Neumann, Varieties of Groups, Ergeb. Math. Grenzgeb. 37, Springer, Berlin, 1967.
  17. V. G. Pestov, Neighbourhoods of unity in free topological groups, Moscow Univ. Math. Bull. 40 (1985), 8-12.
  18. V. G. Pestov, Universal arrows to forgetful functors from categories of topological algebra, Bull. Austral. Math. Soc. 48 (1993), 209-249.
  19. P. Samuel, On universal mappings and free topological groups, Bull. Amer. Math. Soc. 54 (1948), 591-598.
  20. D. B. Shakhmatov, Zerodimensionality of free topological groups and topological groups with noncoinciding dimensions, Bull. Polish Acad. Sci. Math. 37 (1989), 497-506.
  21. D. B. Shakhmatov, Imbeddings into topological groups preserving dimensions, Topology Appl. 36 (1990), 181-204.
Pages:
1-8
Main language of publication
English
Received
1997-04-24
Published
1998
Exact and natural sciences