ArticleOriginal scientific text

Title

The Local Duality for Homomorphisms and an Application to Pure Semisimple PI-Rings

Authors 1

Affiliations

  1. Katedra Algebry, MFF-UK, Sokolovská 83, 18675 Praha 8, Czech Republic

Bibliography

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules 2nd ed., Grad. Texts in Math. 13, Springer, New York, 1992.
  2. M. Auslander, Representation theory of artin algebras I Comm. Algebra 1 (1974), 177-268.
  3. M. Auslander, Large modules over artin algebras in: Algebra, Topology and Category Theory, Academic Press, New York, 1976, 1-17.
  4. M. Auslander, Functors and morphisms determined by objects in: Representation Theory of Algebras, Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1978, 1-244.
  5. M. Auslander, Applications of morphisms determined by modules ibid., 245-327.
  6. M. Auslander and I. Reiten, On the representation type of triangular matrix rings J. London Math. Soc. (2) 12 (1976), 371-382.
  7. M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
  8. J.-E. Björk, Rings satisfying a minimum condition on principal ideals J. Reine Angew. Math. 236 (1969), 112-119.
  9. P. M. Cohn, Algebra 2 2nd ed., Wiley, Chichester, 1989.
  10. I. Herzog, A test for finite representation type J. Pure Appl. Algebra 95 (1994), 151-182.
  11. C. U. Jensen and H. Lenzing, Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules Algebra Logic Appl. 2, Gordon and Breach, New York, 1989.
  12. H. Krause, Dualizing rings and a characterisation of finite representation type C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 507-510.
  13. M. Prest, Model Theory and Modules London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, Cambridge, 1988.
  14. C. M. Ringel and H. Tachikawa, QF-3 rings J. Reine Angew. Math. 272 (1975), 49-72.
  15. A. Rosenberg and D. Zelinsky, Finiteness of the injective hull Math. Z. 70 (1959), 372-380.
  16. M. Schmidmeier, Auslander-Reiten Köcher für artinsche Ringe mit Polynomidentität Dissertation Univ. München, 1996, 88 pp.
  17. M. Schmidmeier, A dichotomy for finite length modules induced by local duality Comm. Algebra 25 (1997), 1933-1944.
  18. M. Schmidmeier, Auslander-Reiten theory for artinian PI-rings J. Algebra, to appear.
  19. M. Schmidmeier, Endofinite modules over hereditary artinian PI-rings in: Proc. Conf. ICRA VIII, to appear.
  20. D. Simson, Functor categories in which every flat object is projective Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380.
  21. D. Simson, Partial Coxeter functors and right pure semisimple hereditary rings J. Algebra 71 (1981), 195-218.
  22. D. Simson, Indecomposable modules over one-sided serial local rings and right pure semisimple rings Tsukuba J. Math. 7 (1983), 87-103.
  23. D. Simson, On right pure semisimple hereditary rings and an Artin problem J. Pure Appl. Algebra 104 (1995), 313-332.
  24. D. Simson, An Artin problem for division ring extensions and the pure semisimplicity conjecture I Arch. Math. (Basel) 66 (1996), 114-122.
  25. D. Simson, A class of potential counter-examples to the pure semisimplicity conjecture in: Proc. Conf. Algebra and Model Theory, Essen-Dresden, 1994 and 1995, Gordon and Breach, London, 1997, 345-373.
  26. B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations of rings of pure global dimension zero Trans. Amer. Math. Soc. 320 (1990), 695-711.
Pages:
121-132
Main language of publication
English
Received
1997-05-17
Accepted
1997-11-28
Published
1998
Exact and natural sciences