PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 76 | 2 | 279-294
Tytuł artykułu

On the equivalence of Ricci-semisymmetry and semisymmetry

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Rocznik
Tom
76
Numer
2
Strony
279-294
Opis fizyczny
Daty
wydano
1998
otrzymano
1997-07-21
poprawiono
1997-10-24
Twórcy
autor
  • Department of Mathematics, Uludağ University, Gorükle Kampüsü, Bursa, Turkey
autor
  • Department of Mathematics Dumlupinar University Kütahya, Turkey
  • Department of Mathematics, Agricultural University of Wrocław, Grunwaldzka 53, 50-357 Wrocław, Poland
  • Department of Mathematics, Uludağ University, Gorükle Kampüsü, Bursa, Turkey
Bibliografia
  • [1] E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Sci., Singapore, 1996.
  • [2] F. Defever, R. Deszcz, P. Dhooghe, L. Verstraelen and Ş. Yaprak, On Ricci-pseudosymmetric hypersurfaces in spaces of constant curvature, Results Math. 27 (1995), 227-236.
  • [3] F. Defever, R. Deszcz, Z. Şentürk, L. Verstraelen and Ş. Yaprak, P. J. Ryan's problem in semi-Riemannian space forms, Dept. Math., Agricultural Univ. Wrocław, preprint No. 44, 1997.
  • [4] F. Defever, R. Deszcz and L. Verstraelen, On semisymmetric para-Kähler manifolds, Acta Math. Hungar. 74 (1997), 7-17.
  • [5] F. Defever, R. Deszcz, L. Verstraelen and Ş. Yaprak, The equivalence of semisymmetry and Ricci-semisymmetry for certain hypersurfaces, Dept. Math., Agricultural Univ. Wrocław, preprint No. 45, 1997.
  • [6] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
  • [7] J. Deprez, R. Deszcz, L. Verstraelen and Ş. Yaprak, Hypersurfaces satisfying pseudosymmetry type conditions for their Weyl conformal curvature tensor, Atti Acad. Peloritana Cl. Sci. Fis. Mat. Natur., in print.
  • [8] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
  • [9] R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145.
  • [10] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
  • [11] R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Ser. A 44 (1992), 1-34.
  • [12] R. Deszcz, Curvature properties of a certain compact pseudosymmetric manifold, Colloq. Math. 65 (1993), 139-147.
  • [13] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
  • [14] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92.
  • [15] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259-268.
  • [16] R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor, Prace Nauk. Politech. Szczec. 11 (1988), 23-34.
  • [17] R. Deszcz and M. Hotloś, On a certain subclass of pseudosymmetric manifolds, Publ. Math. Debrecen, in print.
  • [18] R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, World Scientific, River Edge, N.J., 1991, 131-147.
  • [19] R. Deszcz, L. Verstraelen and Ş. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), 167-179.
  • [20] R. Deszcz, L. Verstraelen and Ş. Yaprak, Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat manifolds, Dept. Math., Agricultural Univ. Wrocław, preprint No. 32, 1995.
  • [21] R. Deszcz, L. Verstraelen and Ş. Yaprak, On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungar. 78 (1998), 45-57.
  • [22] R. Deszcz and Ş. Yaprak, Curvature properties of Cartan hypersurfaces, Colloq. Math. 67 (1994), 91-98.
  • [23] R. Deszcz and Ş. Yaprak, Curvature properties of certain pseudosymmetric manifolds, Publ. Math. Debrecen 45 (1994), 333-345.
  • [24] Y. Matsuyama, Complete hypersurfaces with R·S = 0 in $\sym E^n+1$, Proc. Amer. Math. Soc. 88 (1983), 119-123.
  • [25] E. M. Patterson, A class of critical Riemannian metrics, J. London Math. Soc. 23 (1981), 349-358.
  • [26] P. J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251-259.
  • [27] P. J. Ryan, A class of complex hypersurfaces, Colloq. Math. 26 (1972), 175-182.
  • [28] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582.
  • [29] S. Tanno, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J. 21 (1969), 297-303.
  • [30] L. Verstraelen, Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in: Geometry and Topology of Submanifolds, VI, World Scientific, River Edge, N.J., 1994, 199-209.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv76z2p279bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.