ArticleOriginal scientific text

Title

On the equivalence of Ricci-semisymmetry and semisymmetry

Authors 1, 2, 3, 1

Affiliations

  1. Department of Mathematics, Uludağ University, Gorükle Kampüsü, Bursa, Turkey
  2. Department of Mathematics Dumlupinar University Kütahya, Turkey
  3. Department of Mathematics, Agricultural University of Wrocław, Grunwaldzka 53, 50-357 Wrocław, Poland

Keywords

pseudosymmetry type manifolds, hypersurfaces, semisymmetric manifolds

Bibliography

  1. E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Sci., Singapore, 1996.
  2. F. Defever, R. Deszcz, P. Dhooghe, L. Verstraelen and Ş. Yaprak, On Ricci-pseudosymmetric hypersurfaces in spaces of constant curvature, Results Math. 27 (1995), 227-236.
  3. F. Defever, R. Deszcz, Z. Şentürk, L. Verstraelen and Ş. Yaprak, P. J. Ryan's problem in semi-Riemannian space forms, Dept. Math., Agricultural Univ. Wrocław, preprint No. 44, 1997.
  4. F. Defever, R. Deszcz and L. Verstraelen, On semisymmetric para-Kähler manifolds, Acta Math. Hungar. 74 (1997), 7-17.
  5. F. Defever, R. Deszcz, L. Verstraelen and Ş. Yaprak, The equivalence of semisymmetry and Ricci-semisymmetry for certain hypersurfaces, Dept. Math., Agricultural Univ. Wrocław, preprint No. 45, 1997.
  6. J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
  7. J. Deprez, R. Deszcz, L. Verstraelen and Ş. Yaprak, Hypersurfaces satisfying pseudosymmetry type conditions for their Weyl conformal curvature tensor, Atti Acad. Peloritana Cl. Sci. Fis. Mat. Natur., in print.
  8. R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
  9. R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145.
  10. R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
  11. R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Ser. A 44 (1992), 1-34.
  12. R. Deszcz, Curvature properties of a certain compact pseudosymmetric manifold, Colloq. Math. 65 (1993), 139-147.
  13. R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
  14. R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92.
  15. R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259-268.
  16. R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor, Prace Nauk. Politech. Szczec. 11 (1988), 23-34.
  17. R. Deszcz and M. Hotloś, On a certain subclass of pseudosymmetric manifolds, Publ. Math. Debrecen, in print.
  18. R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, World Scientific, River Edge, N.J., 1991, 131-147.
  19. R. Deszcz, L. Verstraelen and Ş. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), 167-179.
  20. R. Deszcz, L. Verstraelen and Ş. Yaprak, Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat manifolds, Dept. Math., Agricultural Univ. Wrocław, preprint No. 32, 1995.
  21. R. Deszcz, L. Verstraelen and Ş. Yaprak, On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungar. 78 (1998), 45-57.
  22. R. Deszcz and Ş. Yaprak, Curvature properties of Cartan hypersurfaces, Colloq. Math. 67 (1994), 91-98.
  23. R. Deszcz and Ş. Yaprak, Curvature properties of certain pseudosymmetric manifolds, Publ. Math. Debrecen 45 (1994), 333-345.
  24. Y. Matsuyama, Complete hypersurfaces with R·S = 0 in symEn+1, Proc. Amer. Math. Soc. 88 (1983), 119-123.
  25. E. M. Patterson, A class of critical Riemannian metrics, J. London Math. Soc. 23 (1981), 349-358.
  26. P. J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251-259.
  27. P. J. Ryan, A class of complex hypersurfaces, Colloq. Math. 26 (1972), 175-182.
  28. Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582.
  29. S. Tanno, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J. 21 (1969), 297-303.
  30. L. Verstraelen, Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in: Geometry and Topology of Submanifolds, VI, World Scientific, River Edge, N.J., 1994, 199-209.
Pages:
279-294
Main language of publication
English
Received
1997-07-21
Accepted
1997-10-24
Published
1998
Exact and natural sciences