ArticleOriginal scientific text

Title

The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties

Authors 1

Affiliations

  1. Department of Mathematics, Northeastern University Boston, Massachusetts 02115 U.S.A.

Bibliography

  1. [A] K. Akin, On complexes relating Jacobi-Trudi identity with the Bernstein-Gelfand-Gelfand resolution, J. Algebra 117 (1988), 494-503.
  2. [A-B-W] K. Akin, D. A. Buchsbaum and J. Weyman, Resolutions of determinantal ideals; the submaximal minors, Adv. Math. 39 (1981), 1-30.
  3. [Ar] M. Artale, Syzygies of a certain family of generically imperfect modules, J. Algebra 167 (1994), 233-257.
  4. [Bo] G. Boffi, The universal form of the Littlewood-Richardson rule, Adv. Math. 68 (1988), 40-63.
  5. [B] D. Buchsbaum, Complexes associated with the minors of a matrix, Sympos. Math. 4 (1970), 255-283.
  6. [B-E] D. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Adv. Math. 18 (1975), 245-301.
  7. [D] S. Donkin, Rational Representations of Algebraic Groups, Lecture Notes in Math. 1140, Springer, Berlin, 1985.
  8. [J] J. Jantzen, Representations of Algebraic Groups, Pure and Appl. Math. 131, Academic Press, Boston, 1987.
  9. [MD] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1979.
  10. [L] A. Lascoux, Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202-237.
  11. [W] H. Weyl, The Classical Groups, Princeton Univ. Press, 1973 (8th edition).
  12. [Z] A. Zelevinsky, Resolvents, dual pairs and character formulas, Funktsional. Anal. i Prilozhen. 21 (2) (1987), 74-75 (in Russian).
Pages:
243-263
Main language of publication
English
Received
1997-08-12
Accepted
1997-09-05
Published
1998
Exact and natural sciences