ArticleOriginal scientific text

Title

Comultiplications of the Wedge of Two Moore Spaces

Authors 1, 2

Affiliations

  1. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
  2. Department of Mathematics-IME, University of São Paulo, Caixa Postal 66.281-AG. Cidade de São Paulo, 05315-970 São Paulo, Brasil

Bibliography

  1. M. Arkowitz and M. Golasiński, Co-H-structures on Moore spaces of type (G,2), Canad. J. Math. 46 (1994), 673-686.
  2. M. Arkowitz and G. Lupton, Rational co-H-spaces, Comment. Math. Helv. 66 (1991), 79-109.
  3. M. Arkowitz and G. Lupton, Equivalence classes of homotopy-associative comultiplications of finite complexes, J. Pure Appl. Algebra 102 (1995), 109-136.
  4. M. G. Barratt, Track groups I, Proc. London Math. Soc. 5 (1955), 71-106; II, ibid., 285-329.
  5. B H. J. Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), 49-107.
  6. M. Golasiński and D. L. Gonçalves, On co-Moore spaces, Math. Scand., to appear.
  7. H P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York, 1965.
  8. R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968.
  9. C. M. Naylor, On the number of comultiplications of a suspension, Illinois J. Math. 12 (1968), 620-622.
  10. G. W. Whitehead, Elements of Homotopy Theory, Springer, Berlin, 1978.
Pages:
229-242
Main language of publication
English
Received
1997-01-21
Accepted
1997-05-28
Published
1998
Exact and natural sciences