ArticleOriginal scientific text

Title

Chain conditions in modular lattices

Authors 1, 2

Affiliations

  1. Departamento de Matemática, Universidade de Lisboa, 1699 Lisboa Codex, Portugal
  2. Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland, U.K.

Bibliography

  1. T. Albu and P. F. Smith, Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki theorem (I), Math. Proc. Cambridge Philos. Soc. 120 (1996), 87-101.
  2. T. Albu and P. F. Smith, Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki theorem (II), Comm. Algebra 25 (1997), 1111-1128.
  3. I. S. Alkhazzi, Modules, lattices and their direct summands, thesis, University of Glasgow 1992.
  4. I. S. Alkhazzi and P. F. Smith, Modules with chain conditions on superfluous submodules, Comm. Algebra 19 (1991), 2331-2351.
  5. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, 1992.
  6. K. R. Goodearl, Singular Torsion and the Splitting Properties, Mem. Amer. Math. Soc. 124 (1972).
  7. P. Grzeszczuk, The Goldie dimension of some extensions of modular lattices, in: Contemp. Math. 131, Part 3, Amer. Math. Soc., 1992, 111-119.
  8. P. Grzeszczuk and E. R. Puczyłowski, On Goldie and dual Goldie dimensions, J. Pure Appl. Algebra 31 (1984), 47-54.
  9. B. Lemonnier, Déviation des ensembles et groupes abéliens totalement ordonnés, Bull. Sci. Math. 96 (1972), 289-303.
  10. C. Năstăsescu and F. van Oystaeyen, Dimensions of Ring Theory, Reidel, 1987.
  11. E. R. Puczyłowski, On finiteness conditions of modular lattices, preprint.
  12. P. F. Smith, Modules with many direct summands, Osaka J. Math. 27 (1990), 253-264.
  13. O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, 1958.
Pages:
85-98
Main language of publication
English
Received
1997-03-04
Accepted
1997-07-02
Published
1998
Exact and natural sciences