ArticleOriginal scientific text
Title
Endpoint bounds for convolution operators with singular measures
Authors 1, 1, 1
Affiliations
- Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
Abstract
Let be the graph of the function defined by with 1$!\beta_1\leq \dots \leq \beta_n, \mu \R^{n+1} \mu L^p L^q!$! bounded.
Bibliography
- [B-S] Bennett C. and Sharpley R., Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988.
- [C] Christ M., Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
- [F-G-U] Ferreyra E., Godoy T. and Urciuolo M.,
- estimates for convolution operators with -dimensional singular measures, J. Fourier Anal. Appl., to appear. - [O] Oberlin D., Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60.
- [R-S] Ricci F. and Stein E.M., Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389.
- [S] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
- [St] Stein E.M. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [S-W] Stein E. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.