ArticleOriginal scientific text

Title

Endpoint bounds for convolution operators with singular measures

Authors 1, 1, 1

Affiliations

  1. Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

Abstract

Let SRn+1 be the graph of the function φ:[-1,1]nR defined by φ(x1,s.,xn)=j=1n|xj|βj, with 1$!\beta_1\leq \dots \leq \beta_n,andt\mu themeasureon\R^{n+1}ducedbytheEuclanareameasureonS.Inthispaperwecharacterizethesetofpairs(p,q)suchtt^heconvolutionoperarwith\mu isL^p-L^q!$! bounded.

Bibliography

  1. [B-S] Bennett C. and Sharpley R., Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988.
  2. [C] Christ M., Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
  3. [F-G-U] Ferreyra E., Godoy T. and Urciuolo M., Lp-Lq estimates for convolution operators with n-dimensional singular measures, J. Fourier Anal. Appl., to appear.
  4. [O] Oberlin D., Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60.
  5. [R-S] Ricci F. and Stein E.M., Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389.
  6. [S] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
  7. [St] Stein E.M. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
  8. [S-W] Stein E. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
Pages:
35-47
Main language of publication
English
Received
1996-06-11
Accepted
1997-03-22
Published
1998
Exact and natural sciences