ArticleOriginal scientific text

Title

A note on the diophantine equation {kchse2}-1=qn+1

Authors 1

Affiliations

  1. Department of Mathematics Zhanjiang Teachers College 524048 Zhanjiang, Guangdong P.R. China

Abstract

In this note we prove that the equation {kchse2}-1=qn+1, q2,n3, has only finitely many positive integer solutions (k,q,n). Moreover, all solutions (k,q,n) satisfy k<1010182, q<1010165 and n<21017.

Bibliography

  1. R. Alter, On the non-existence of perfect double Hamming-error-correcting codes on q=8 and q=9 symbols, Inform. and Control 13 (1968), 619-627.
  2. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
  3. C. Hering, A remark on two diophantine equations of Peter Cameron, in: Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser. 165, Cambridge Univ. Press, Cambridge, 1992, 448-458.
  4. T. N. Shorey and R. Tijdeman, Exponential Diophantine Equation, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986.
Pages:
31-34
Main language of publication
English
Received
1997-02-06
Published
1998
Exact and natural sciences