ArticleOriginal scientific text

Title

On a Theorem of Mierczyński

Authors 1

Affiliations

  1. Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Abstract

We prove that the initial value problem x'(t) = f(t,x(t)), x(0)=x1 is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.

Bibliography

  1. A. Chaljub-Simon, R. Lemmert, S. Schmidt and P. Volkmann, Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rechten Seiten in geordneten Banachräumen, in: General Inequalities 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992, 307-320.
  2. K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 296, Springer, Berlin, 1977.
  3. G. Herzog, An existence and uniqueness theorem for ordinary differential equations in ordered Banach spaces, Demonstratio Math., to appear.
  4. G. Herzog, On ordinary differential equations with quasimonotone increasing right hand side, Arch. Math. (Basel), to appear.
  5. R. Lemmert, Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen, Funkcial. Ekvac. 32 (1989), 243-249.
  6. R. Lemmert, R. M. Redheffer and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen, in: General Inequalities 5 (Oberwolfach, 1986), Internat. Ser. Numer. Math. 80, Birkhäuser, Basel, 1987, 381-390.
  7. R. Lemmert, S. Schmidt and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen mit quasimonoton wachsender rechter Seite, Math. Nachr. 153 (1991), 349-352.
  8. R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Krieger, 1987.
  9. J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal. 18 (1987), 642-646.
  10. J. Mierczyński, Uniqueness for a class of cooperative systems of ordinary differential equations, Colloq. Math. 67 (1994), 21-23.
  11. J. Mierczyński, Uniqueness for quasimonotone systems with strongly monotone first integral, in: Proc. Second World Congress of Nonlinear Analysts (WCNA-96), Athens, 1996, to appear.
  12. P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164.
  13. P. Volkmann, Cinq cours sur les équations différentielles dans les espaces de Banach, in: Topological Methods in Differential Equations and Inclusions (Montréal, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472, Kluwer, Dordrecht, 1995, 501-520.
Pages:
19-29
Main language of publication
English
Received
1997-05-20
Accepted
1997-08-01
Published
1998
Exact and natural sciences