ArticleOriginal scientific text
Title
Some stability results for asymptotic norming properties of Banach spaces
Authors 1, 2
Affiliations
- Stat-Math Division, Indian Statistical Institute, 203, B. T. Road, Calcutta 700035, India
- Stat-Math Division, Indian Statistical Institute, R. V. College P.O., Bangalore 560059, India
Keywords
Bibliography
- P. Bandyopadhyay and S. Basu, On a new asymptotic norming property, ISI Tech. Report No. 5/95, 1995.
- P. Bandyopadhyay and A. K. Roy, Some stability results for Banach spaces with the Mazur Intersection Property, Indag. Math. 1 (1990), 137-154.
- D. Chen and B. L. Lin, Ball separation properties in Banach spaces, preprint, 1995.
- D J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
- J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220.
- G. Godefroy, Applications à la dualité d'une propriété d'intersection de boules, Math. Z. 182 (1983), 233-236.
- P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993.
- Z. Hu and B. L. Lin, On the asymptotic norming properties of Banach spaces, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 136, Marcel Dekker, 1992, 195-210.
- Z. Hu and B. L. Lin, Smoothness and asymptotic norming properties in Banach spaces, Bull. Austral. Math. Soc. 45 (1992), 285-296.
- Z. Hu and B. L. Lin, RNP and CPCP in Lebesgue Bochner function spaces, Illinois J. Math. 37 (1993), 329-347.
- Z. Hu and M. A. Smith, On the extremal structure of the unit ball of the space
, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, 1995, 205-223. - K N. J. Kalton, Spaces of compact operators, Math. Ann. 108 (1974), 267-278.
- L Å. Lima, Uniqueness of Hahn-Banach extensions and lifting of linear dependences, Math. Scand. 53 (1983), 97-113.
- Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), 473-490.
- I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750.
- E. Oja and M. P oldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306.
- P R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- R T. S. S. R. K. Rao, Spaces with the Namioka-Phelps property have trivial
-structure, Arch. Math. (Basel) 62 (1994), 65-68. - B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57.
- S F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331.
- Y D. Yost, Approximation by compact operators between
spaces, J. Approx. Theory 49 (1987), 99-109.