PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 75 | 2 | 271-284
Tytuł artykułu

Some stability results for asymptotic norming properties of Banach spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Rocznik
Tom
75
Numer
2
Strony
271-284
Opis fizyczny
Daty
wydano
1998
otrzymano
1996-05-24
poprawiono
1997-05-20
Twórcy
  • Stat-Math Division, Indian Statistical Institute, 203, B. T. Road, Calcutta 700035, India
  • Stat-Math Division, Indian Statistical Institute, R. V. College P.O., Bangalore 560059, India
Bibliografia
  • [1] P. Bandyopadhyay and S. Basu, On a new asymptotic norming property, ISI Tech. Report No. 5/95, 1995.
  • [2] P. Bandyopadhyay and A. K. Roy, Some stability results for Banach spaces with the Mazur Intersection Property, Indag. Math. 1 (1990), 137-154.
  • [3] D. Chen and B. L. Lin, Ball separation properties in Banach spaces, preprint, 1995.
  • [4] D J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
  • [5] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  • [6] G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220.
  • [7] G. Godefroy, Applications à la dualité d'une propriété d'intersection de boules, Math. Z. 182 (1983), 233-236.
  • [8] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993.
  • [9] Z. Hu and B. L. Lin, On the asymptotic norming properties of Banach spaces, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 136, Marcel Dekker, 1992, 195-210.
  • [10] Z. Hu and B. L. Lin, Smoothness and asymptotic norming properties in Banach spaces, Bull. Austral. Math. Soc. 45 (1992), 285-296.
  • [11] Z. Hu and B. L. Lin, RNP and CPCP in Lebesgue Bochner function spaces, Illinois J. Math. 37 (1993), 329-347.
  • [12] Z. Hu and M. A. Smith, On the extremal structure of the unit ball of the space $C(K, X)^*$, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, 1995, 205-223.
  • [13] K N. J. Kalton, Spaces of compact operators, Math. Ann. 108 (1974), 267-278.
  • [14] L Å. Lima, Uniqueness of Hahn-Banach extensions and lifting of linear dependences, Math. Scand. 53 (1983), 97-113.
  • [15] Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), 473-490.
  • [16] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750.
  • [17] E. Oja and M. P oldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306.
  • [18] P R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
  • [19] R T. S. S. R. K. Rao, Spaces with the Namioka-Phelps property have trivial $L$-structure, Arch. Math. (Basel) 62 (1994), 65-68.
  • [20] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57.
  • [21] S F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331.
  • [22] Y D. Yost, Approximation by compact operators between $C(X)$ spaces, J. Approx. Theory 49 (1987), 99-109.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv75z2p271bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.