PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 75 | 2 | 245-269
Tytuł artykułu

The Becker-Döring model with diffusion. I. Basic properties of solutions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
75
Numer
2
Strony
245-269
Opis fizyczny
Daty
wydano
1998
otrzymano
1997-05-15
Twórcy
  • Institut Elie Cartan-Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France
  • Institute of Applied Mathematics and Mechanics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
  • [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254.
  • [2] J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation, J. Statist. Phys. 61 (1990), 203-234.
  • [3] J. M. Ball and J. Carr, Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 109-116.
  • [4] J. M. Ball, J. Carr and O. Penrose, The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104 (1986), 657-692.
  • [5] P. Baras, J. C. Hassan et L. Véron, Compacité de l'opérateur définissant la solution d'une équation d'évolution non homogène, C. R. Acad. Sci. Paris Sér. I 284 (1977), 799-802.
  • [6] P. Bénilan and D. Wrzosek, On an infinite system of reaction-diffusion equations, Adv. Math. Sci. Appl. 7 (1997), 349-364.
  • [7] J. F. Collet and F. Poupaud, Existence of solutions to coagulation-fragmentation systems with diffusion, Transport. Theory Statist. Phys. 25 (1996), 503-513.
  • [8] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, 1968.
  • [9] Ph. Laurençot and D. Wrzosek, Fragmentation-diffusion model. Existence of solutions and asymptotic behaviour, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
  • [10] Ph. Laurençot and D. Wrzosek, The Becker-Döring model with diffusion. II. Long time behaviour, submitted.
  • [11] R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in: Nonlinear Equations in Applied Science, W. F. Ames and C. Rogers (eds.), Academic Press, Boston, 1992.
  • [12] O. Penrose and A. Buhagiar, Kinetics of nucleation in a lattice gas model: microscopic theory and simulation compared, J. Statist. Phys. 30 (1983), 219-241.
  • [13] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984.
  • [14] M. Slemrod, Trend to equilibrium in the Becker-Döring cluster equations, Nonlinearity 2 (1989), 429-443.
  • [15] J. L. Spouge, An existence theorem for the discrete coagulation-fragmentation equations, Math. Proc. Cambridge Philos. Soc. 96 (1984), 351-357.
  • [16] D. Wrzosek, Existence of solutions for the discrete coagulation-fragmentation model with diffusion, Topol. Methods Nonlinear Anal. 9 (1997), 279-296.
  • [17] A. Ziabicki, Generalized theory of nucleation kinetics. IV. Nucleation as diffusion in the space of cluster dimensions, positions, orientations and internal structure, J. Chem. Phys. 85 (1986), 3042-3056.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv75z2p245bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.