ArticleOriginal scientific text

Title

The Becker-Döring model with diffusion. I. Basic properties of solutions

Authors 1, 2

Affiliations

  1. Institut Elie Cartan-Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France
  2. Institute of Applied Mathematics and Mechanics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland

Bibliography

  1. H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254.
  2. J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation, J. Statist. Phys. 61 (1990), 203-234.
  3. J. M. Ball and J. Carr, Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 109-116.
  4. J. M. Ball, J. Carr and O. Penrose, The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104 (1986), 657-692.
  5. P. Baras, J. C. Hassan et L. Véron, Compacité de l'opérateur définissant la solution d'une équation d'évolution non homogène, C. R. Acad. Sci. Paris Sér. I 284 (1977), 799-802.
  6. P. Bénilan and D. Wrzosek, On an infinite system of reaction-diffusion equations, Adv. Math. Sci. Appl. 7 (1997), 349-364.
  7. J. F. Collet and F. Poupaud, Existence of solutions to coagulation-fragmentation systems with diffusion, Transport. Theory Statist. Phys. 25 (1996), 503-513.
  8. O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, 1968.
  9. Ph. Laurençot and D. Wrzosek, Fragmentation-diffusion model. Existence of solutions and asymptotic behaviour, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
  10. Ph. Laurençot and D. Wrzosek, The Becker-Döring model with diffusion. II. Long time behaviour, submitted.
  11. R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in: Nonlinear Equations in Applied Science, W. F. Ames and C. Rogers (eds.), Academic Press, Boston, 1992.
  12. O. Penrose and A. Buhagiar, Kinetics of nucleation in a lattice gas model: microscopic theory and simulation compared, J. Statist. Phys. 30 (1983), 219-241.
  13. F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984.
  14. M. Slemrod, Trend to equilibrium in the Becker-Döring cluster equations, Nonlinearity 2 (1989), 429-443.
  15. J. L. Spouge, An existence theorem for the discrete coagulation-fragmentation equations, Math. Proc. Cambridge Philos. Soc. 96 (1984), 351-357.
  16. D. Wrzosek, Existence of solutions for the discrete coagulation-fragmentation model with diffusion, Topol. Methods Nonlinear Anal. 9 (1997), 279-296.
  17. A. Ziabicki, Generalized theory of nucleation kinetics. IV. Nucleation as diffusion in the space of cluster dimensions, positions, orientations and internal structure, J. Chem. Phys. 85 (1986), 3042-3056.
Pages:
245-269
Main language of publication
English
Received
1997-05-15
Published
1998
Exact and natural sciences