PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 75 | 2 | 213-244
Tytuł artykułu

Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
75
Numer
2
Strony
213-244
Opis fizyczny
Daty
wydano
1998
otrzymano
1997-01-02
poprawiono
1997-02-20
poprawiono
1997-05-15
Twórcy
  • Fachbereich Mathematik und Informatik, Universität GH Essen, 45117 Essen, Germany
  • Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
  • [1] C. Böttinger and R. Göbel, Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings, J. Pure Appl. Algebra 76 (1991), 121-141.
  • [2] S. Brenner, Decomposition properties of some small diagrams of modules, in: Symposia Math. 13, Academic Press, London, 1974, 127-141.
  • [3] A. L. S. Corner, Endomorphism algebras of large modules with distinguished submodules, J. Algebra 11 (1969), 155-185.
  • [4] Yu. A. Drozd, Matrix problems and categories of matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144-153 (in Russian).
  • [5] B. Franzen and R. Göbel, The Brenner-Butler-Corner-Theorem and its applications to modules, in: Abelian Group Theory, Gordon and Breach, London, 1986, 209-227.
  • [6] L. Fuchs, Large indecomposable modules in torsion theories, Aequationes Math. 34 (1987), 106-111.
  • [7] P. Gabriel, Indecomposable representations II, in: Symposia Math. 11, Academic Press, London, 1973, 81-104.
  • [8] R. Göbel and W. May, Four submodules suffice for realizing algebras over commutative rings, J. Pure Appl. Algebra 65 (1990), 29-43.
  • [9] R. Göbel and W. May, Endomorphism algebras of peak I-spaces over posets of infinite prinjective type, Trans. Amer. Math. Soc. 349 (1997), 3535-3567.
  • [10] R. Göbel and D. Simson, Rigid families and endomorphism algebras of Kronecker modules, preprint, 1997.
  • [11] S. Kasjan and D. Simson, Varieties of poset representations and minimal posets of wild prinjective type, in: Proc. Sixth Internat. Conf. Representations of Algebras, CMS Conf. Proc. 14, 1993, 245-284.
  • [12] S. Kasjan and D. Simson, Fully wild prinjective type of posets and their quadratic forms, J. Algebra 172 (1995), 506-529.
  • [13] S. Kasjan and D. Simson, A peak reduction functor for socle projective representations, ibid. 187 (1997), 49-70.
  • [14] S. Kasjan and D. Simson, A subbimodule reduction, a peak reduction functor and tame prinjective type, Bull. Polish Acad. Sci. Math. 45 (1997), 89-107.
  • [15] J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.
  • [16] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), 269-302.
  • [17] C. M. Ringel, Infinite-dimensional representations of finite dimensional hereditary algebras, Symposia Math. 23 (1979), 321-412.
  • [18] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
  • [19] S. Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243-256.
  • [20] D. Simson, Module categories and adjusted modules over traced rings, Dissertationes Math. 269 (1990).
  • [21] D. Simson, Peak reductions and waist reflection functors, Fund. Math. 137 (1991), 115-144.
  • [22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, London, 1992.
  • [23] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 71-103.
  • [24] D. Simson Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I 321 (1995), 33-38.
  • [25] D. Simson, Representation embedding problems, categories of extensions and prinjective modules, in: Proc. Seventh Internat. Conf. Representations of Algebras, CMS Conf. Proc. 18, 1996, 601-639.
  • [26] D. Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68.
  • [27] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243.
  • [28] D. Vossieck, Représentations de bifoncteurs et interprétations en termes de modules, C. R. Acad. Sci. Paris Sér. I 307 (1988), 713-716.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv75z2p213bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.