ArticleOriginal scientific text
Title
The imaginary cyclic sextic fields with class numbers equal to their genus class numbers
Authors 1
Affiliations
- Département de Mathématiques, Université de Caen, UFR Sciences 14032 Caen Cedex, France
Abstract
It is known that there are only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Here, we determine all the imaginary cyclic sextic fields with class numbers equal to their genus class numbers.
Keywords
relative class number, class number, genus field, sextic number field
Bibliography
- [Gra] M. N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de
, J. Reine Angew. Math. 277 (1975), 89-116. - [Lou 1] S. Louboutin, Minoration au point 1 des fonctions
et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith. 62 (1992), 109-124. - [Lou 2] S. Louboutin, Majorations explicites de
, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 11-14. - [Lou 3] S. Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc. 120 (1994), 425-434.
- [Lou 4] S. Louboutin, A finiteness theorem for imaginary abelian number fields, Manuscripta Math. 91 (1996), 343-352.
- [Lou 5] S. Louboutin, The nonquadratic imaginary cyclic fields of
-power degrees with class numbers equal to their genus numbers, Proc. Amer. Math. Soc., to appear. - [Low] M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140.
- [Miy] I. Miyada, On imaginary abelian number fields of type
with one class in each genus, Manuscripta Math. 88 (1995), 535-540. - [PK] Y.-H. Park and S.-H. Kwon, Determination of all imaginary abelian sextic number fields with class number
, Acta Arith., to appear. - [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
- [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 62 (1994), 899-921.