ArticleOriginal scientific text
Title
On the intersection multiplicity of images under an etale morphism
Authors 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
We present a formula for the intersection multiplicity of the images of two subvarieties under an etale morphism between smooth varieties over a field k. It is a generalization of Fulton's Example 8.2.5 from [3], where a strong additional assumption has been imposed. In a special case where the base field k is algebraically closed and a proper component of the intersection is a closed point, intersection multiplicity is an invariant of etale morphisms. This corresponds with analytic geometry where intersection multiplicity is an invariant of local biholomorphisms.
Keywords
intersection multiplicity, multiplicity of ideals in a semilocal ring, etale morphisms, unramified morphisms, algebraic varieties
Bibliography
- A. B. Altman and S. L. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math. 146, Springer, 1970.
- C. Chevalley, Intersections of algebraic and algebroid varieties, Trans. Amer. Math. Soc. 57 (1945), 1-85.
- W. Fulton, Intersection Theory, Springer, Berlin, 1984.
- A. Grothendieck and J. A. Dieudonné, Éléments de Géométrie Algébrique, Springer, Berlin, 1971.
- H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
- D. Mumford, Algebraic Geometry I. Complex projective varieties, Springer, Berlin, 1976.
- M. Nagata, Local Rings, Interscience Publishers, New York, 1962.
- K. J. Nowak, Flat morphisms between regular varieties, Univ. Iagel. Acta Math. 35 (1997), 243-246.
- K. J. Nowak, A proof of the criterion for multiplicity one, ibid., 247-250.
- P. Samuel, Algèbre locale, Mémorial Sci. Math. 123, Gauthier-Villars, Paris, 1953.
- P. Samuel, Méthodes d'algèbre abstraite en géométrie algébrique, Ergeb. Math. Grenzgeb. 4, Springer, Berlin, 1955.
- F. Severi, Über die Grundlagen der algebraischen Geometrie, Abh. Math. Sem. Hamburg Univ. 9 (1933), 335-364.
- A. Weil, Foundations of Algebraic Geometry, Amer. Math. Soc. Colloq. Publ. 29, 1962.
- O. Zariski and P. Samuel, Commutative Algebra, Vols. I and II, Van Nostrand, Princeton, 1958, 1960.