ArticleOriginal scientific text

Title

Local spectrum and Kaplansky's theorem on algebraic operators

Authors 1

Affiliations

  1. Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Abstract

Using elementary arguments we improve former results of P. Vrbová concerning local spectrum. As a consequence, we obtain a new proof of Kaplansky’s theorem on algebraic operators on a Banach space.

Keywords

local spectral radius, local spectrum, algebraic operators

Bibliography

  1. B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
  2. B. Aupetit and D. Drissi, Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579.
  3. I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
  4. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.
  5. I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977.
  6. C. Foiaş and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473-486.
  7. J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324.
  8. P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
  9. I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1969.
  10. P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492.
Pages:
159-165
Main language of publication
English
Received
1997-01-27
Published
1998
Exact and natural sciences