ArticleOriginal scientific text
Title
Local spectrum and Kaplansky's theorem on algebraic operators
Authors 1
Affiliations
- Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
Abstract
Using elementary arguments we improve former results of P. Vrbová concerning local spectrum. As a consequence, we obtain a new proof of Kaplansky’s theorem on algebraic operators on a Banach space.
Keywords
local spectral radius, local spectrum, algebraic operators
Bibliography
- B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
- B. Aupetit and D. Drissi, Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579.
- I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
- N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.
- I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977.
- C. Foiaş and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473-486.
- J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324.
- P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
- I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1969.
- P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492.