ArticleOriginal scientific text

Title

K-contact A-manifolds

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Cracow Branch, Św.Tomasza 30, 31-027 Kraków, Poland

Abstract

The aim of this paper is to give a characterization of regular K-contact A-manifolds.

Bibliography

  1. [B] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.
  2. [Bl] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, 1976.
  3. [B-W] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734.
  4. [G] A. Gray, Einstein like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280.
  5. [J-1] W. Jelonek, Some simple examples of almost Kähler non-Kähler structures, Math. Ann. 305 (1996), 639-649.
  6. [J-2] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Polish Acad. Sci., 1995.
  7. [K] S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. J. 8 (1956), 29-45.
  8. [O-1] Z. Olszak, On contact metric manifolds, ibid. 31 (1979), 247-253.
  9. [O-2] Z. Olszak, Certain property of the Ricci tensor on Sasakian manifolds, Colloq. Math. 40 (1979), 235-237.
  10. [O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
  11. [S-1] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann. 271 (1985), 333-337.
  12. [S-2] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677-684.
  13. [S-V] K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103.
Pages:
97-103
Main language of publication
English
Received
1996-09-30
Accepted
1997-04-01
Published
1998
Exact and natural sciences