Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Bibliografia
[1] J. K. Arason, Der Wittring projektiver Räume, Math. Ann. 253 (1980), 205-212.
[2] J. K. Arason, R. Elman and B. Jacob, On the Witt ring of elliptic curves, in: K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Proc. Sympos. Pure Math. 58, Part 2, Amer. Math. Soc., 1995, 1-25.
[3] F. Fernández-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann. 277 (1987), 453-468.
[4] P. Jaworski, On the Witt rings of function fields of quasihomogeneous varieties, Colloq. Math. 73 (1997), 195-219.
[5] M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), 479-508.
[6] M. Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, Sitzungsber. Heidelb. Akad. Wiss., Springer, Berlin, 1970, 93-157.
[7] M. Knebusch, Symmetric bilinear forms over algebraic varieties, in: Conference on Quadratic Forms (Kingston 1976), Queen's Papers in Pure and Appl. Math. 46, 1977, 102-283.
[8] W. Pardon, The exact sequence of localization for Witt groups, in: Lecture Notes in Math. 551, Springer, Berlin, 1976, 336-379.
[9] D. Quillen, Higher algebraic K-theory I, in: Lecture Notes in Math. 341, Springer, Berlin, 1973, 85-147.
[10] W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin, 1985.
[11] R. Swan, K-theory of quadric hypersurfaces, Ann. of Math. 122 (1985), 113-153.
[12] M. Szyjewski, An invariant of quadratic forms over schemes, Documenta Math. J. DMV 1(1996), 449-478.
[13] M. Szyjewski, Witt rings of Grassmann varieties, in: Proc. Conf. on Algebraic K-Theory, Poznań, September 4-8, 1995, Contemp. Math. 199, Amer. Math. Soc., 1996, 185-210.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv75z1p53bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.