ArticleOriginal scientific text

Title

On check{H}n-bubbles in n-dimensional compacta

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Tadžik Academy of Sciences, Ul. Akademičeskaya 10, Dušanbe, 734013 Tadžikistan
  2. Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, 1001 Ljubljana, Slovenia

Abstract

A topological space X is called an check{H}n-bubble (n is a natural number, check{H}n is Čech cohomology with integer coefficients) if its n-dimensional cohomology check{H}n(X) is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable check{H}n-bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any check{H}2-bubbles; and (3) Every n-acyclic finite-dimensional Lcheck{H}n-trivial metrizable compactum contains an check{H}n-bubble.

Keywords

locally connected spaces, low-dimensional compacta, Čech cohomology, bubble, slender group

Bibliography

  1. P. S. Aleksandrov, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.
  2. K. Borsuk, Theory of Retracts, Monograf. Mat. 44, PWN, Warszawa, 1967.
  3. G. E. Bredon, Sheaf Theory, 2nd ed., Springer, New York, 1997.
  4. R. Engelking, General Topology, Heldermann, Berlin, 1989.
  5. D. B. Fuks and V. A. Rokhlin, Introductory Course in Topology: Geometric Chapters, Nauka, Moscow, 1977 (in Russian).
  6. R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
  7. A. E. Harlap, Local homology and cohomology, homological dimension and generalized manifolds, Mat. Sb. 96 (1975), 347-373 (in Russian); English transl.: Math. USSR-Sb. 25 (1975), 323-349.
  8. U. H. Karimov, On the generalized homotopy axiom, Izv. Akad. Nauk Tadžik. SSR Otdel. Fiz.-Mat. Khim. i Geol. Nauk 71 (1979), 83-84 (in Russian).
  9. W. Kuperberg, On certain homological properties of finite-dimensional compacta. Carries, minimal carries and bubbles, Fund. Math. 83 (1973), 7-23.
  10. K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.
  11. S. Mardešić and J. Segal, Shape Theory: The Inverse System Approach, North-Holland, Amsterdam 1982.
  12. W. J. R. Mitchell, Homology manifolds, inverse systems and cohomological local connectedness, J. London Math. Soc. (2) 19 (1979), 348-358.
  13. E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. 7 (1959), 143-144.
Pages:
39-51
Main language of publication
English
Received
1996-02-23
Accepted
1997-03-11
Published
1998
Exact and natural sciences