ArticleOriginal scientific textOn
Title
On -bubbles in n-dimensional compacta
Authors 1, 2
Affiliations
- Institute of Mathematics, Tadžik Academy of Sciences, Ul. Akademičeskaya 10, Dušanbe, 734013 Tadžikistan
- Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, 1001 Ljubljana, Slovenia
Abstract
A topological space X is called an -bubble (n is a natural number, is Čech cohomology with integer coefficients) if its n-dimensional cohomology is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable -bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any -bubbles; and (3) Every n-acyclic finite-dimensional -trivial metrizable compactum contains an -bubble.
Keywords
locally connected spaces, low-dimensional compacta, Čech cohomology, bubble, slender group
Bibliography
- P. S. Aleksandrov, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.
- K. Borsuk, Theory of Retracts, Monograf. Mat. 44, PWN, Warszawa, 1967.
- G. E. Bredon, Sheaf Theory, 2nd ed., Springer, New York, 1997.
- R. Engelking, General Topology, Heldermann, Berlin, 1989.
- D. B. Fuks and V. A. Rokhlin, Introductory Course in Topology: Geometric Chapters, Nauka, Moscow, 1977 (in Russian).
- R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
- A. E. Harlap, Local homology and cohomology, homological dimension and generalized manifolds, Mat. Sb. 96 (1975), 347-373 (in Russian); English transl.: Math. USSR-Sb. 25 (1975), 323-349.
- U. H. Karimov, On the generalized homotopy axiom, Izv. Akad. Nauk Tadžik. SSR Otdel. Fiz.-Mat. Khim. i Geol. Nauk 71 (1979), 83-84 (in Russian).
- W. Kuperberg, On certain homological properties of finite-dimensional compacta. Carries, minimal carries and bubbles, Fund. Math. 83 (1973), 7-23.
- K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.
- S. Mardešić and J. Segal, Shape Theory: The Inverse System Approach, North-Holland, Amsterdam 1982.
- W. J. R. Mitchell, Homology manifolds, inverse systems and cohomological local connectedness, J. London Math. Soc. (2) 19 (1979), 348-358.
- E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. 7 (1959), 143-144.