ArticleOriginal scientific text

Title

Free operators with operator coefficients

Authors 1

Affiliations

  1. IMADA, Odense Universitet, Campusvej 55, 5230 Odense M, Denmark

Keywords

norm of convolution operator, free group, Leinert property

Bibliography

  1. [A-O] C. A. Akemann and P. A. Ostrand, Computing norms in group C^*-algebras, Amer. J. Math. 98 (1976), 1015-1047.
  2. [A] T. Ando, Topics on Operator Inequalities, Hokkaido Univ., Sapporo, 1978; MR 58#2451.
  3. [Bo] M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. 51 (1975), 407-412.
  4. [Bu] A. Buchholz, Norm of convolution by operator-valued functions on free groups, preprint.
  5. [F] M. Fell, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237-268.
  6. [H-P] U. Haagerup and G. Pisier, Bounded linear operators between C^*-algebras, Duke Math. J. 71 (1993), 889-925.
  7. [H] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, 1982.
  8. [K] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354.
  9. [L] M. Leinert, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math. 52 (1974), 149-158.
  10. [M-O] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.
  11. [M] R. Mathias, Concavity of monotone matrix functions of finite order, Linear and Multilinear Algebra 27 (1990), 129-138.
  12. [Ped] G. K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc. 36 (1972), 277-301.
  13. [P-P] M. A. Picardello and T. Pytlik, Norms of free operators, ibid. 104 (1988), 257-261.
  14. [W] W. Woess, A short computation of the norms of free convolution operators, ibid. 96 (1986), 167-170.
Pages:
321-328
Main language of publication
English
Received
1997-03-04
Published
1998
Exact and natural sciences