ArticleOriginal scientific text

Title

On pseudosymmetric para-Kähler manifolds

Authors 1, 2, 3

Affiliations

  1. Institute of Theoretical Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
  2. Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
  3. Department of Mathematics, Agricultural University of Wrocław, Grunwaldzka 53, PL-50-375 Wrocław, Poland

Bibliography

  1. S. Bochner, Curvature and Betti numbers, II, Ann. of Math. 50 (1949), 77-94.
  2. F. Defever, R. Deszcz and L. Verstraelen, On semisymmetric para-Kähler manifolds, Acta Math. Hungar. 74 (1997), 7-17.
  3. F. Defever, R. Deszcz, L. Verstraelen and L. Vrancken, On pseudosymmetric spacetimes, J. Math. Phys. 35 (1994), 5908-5921.
  4. J. Deprez, R. Deszcz and L. Verstraelen, Pseudosymmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192.
  5. A. Derdziński, Examples de métriques de Kaehler et d'Einstein autoduales sur le plan complexe, in: Géométrie riemannienne en dimension 4, Séminaire Arthur Besse 1978/79, Cedic/Fernand Nathan, Paris, 1981, 334-346.
  6. R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1-34.
  7. R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92.
  8. M. Hotloś, On a certain class of Kählerian manifolds, Demonstratio Math. 12 (1979), 935-945.
  9. M. Hotloś, On holomorphically pseudosymmetric Kählerian manifolds, in: Geometry and Topology of Submanifolds, VII, World Scientific, River Edge, N.J., 1995, 139-142.
  10. C. C. Hsiung, Almost Complex and Complex Structures, World Scientific, Singapore, 1995.
  11. Z. Olszak, Bochner flat Kählerian manifolds with a certain condition on the Ricci tensor, Simon Stevin 63 (1989), 295-303.
  12. G. B. Rizza, Varietà parakähleriane, Ann. Mat. Pura Appl. (4) 98 (1974), 47-61.
  13. S. Sawaki and K. Sekigawa, Almost Hermitian manifolds with constant holomorphic sectional curvature, J. Differential Geom. 9 (1974), 123-134.
  14. Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y) · R = 0. I. The local version, ibid. 17 (1982), 531-582.
  15. S. Tachibana, On the Bochner curvature tensor, Natur. Sci. Rep. Ochanomizu Univ. 18 (1967), 15-19.
  16. L. Verstraelen, Comments on pseudosymmetry in the sense of Ryszard Deszcz, in: Geometry and Topology of Submanifolds VI, World Scientific, River Edge, N.J., 1994, 199-209.
  17. H. Yanamoto, On orientable hypersurfaces of ℝ^7 satisfying R(X,Y) ∘ F = 0, Res. Rep. Nagaoka Tech. College 8 (1972), 9-14.
  18. K. Yano and S. Bochner, Curvature and Betti Numbers, Ann. of Math. Stud. 32, Princeton Univ. Press, 1953.
Pages:
253-260
Main language of publication
English
Received
1996-11-13
Accepted
1997-01-27
Published
1998
Exact and natural sciences