ArticleOriginal scientific text

Title

Definability of principal congruences in equivalential algebras

Authors 1, 2

Affiliations

  1. Computer Science Department, Jagiellonian University, Nawojki 11, 30-072 Kraków, Poland
  2. Department of Logic, Jagiellonian University, Grodzka 52, 31-044 Kraków, Poland

Bibliography

  1. K. A. Baker, Definable normal closures in locally finite varieties of groups, Houston J. Math. 7 (1981), 467-471.
  2. J. T. Baldwin and J. Berman, The number of subdirectly irreducible algebras in a variety, Algebra Universalis 5 (1975), 379-389.
  3. J. Berman, A proof of Lyndon's finite basis theorem, Discrete Math. 29 (1980), 229-233.
  4. W. Blok, P. Köhler and D. Pigozzi, On the structure of varieties with equationally definable principal congruences II, Algebra Universalis 18 (1984), 334-379.
  5. S. Burris, An example concerning definable principal congruences, ibid. 7 (1977), 403-404.
  6. S. Burris and J. Lawrence, Definable principal congruences in varieties of rings and groups, ibid. 9 (1979), 152-164.
  7. C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.
  8. A. Eastman and W. Nemitz, Density and closure in implicative semilattices, Algebra Universalis 5 (1975), 1-5.
  9. H. P. Gumm and A. Ursini, Ideals in universal algebras, ibid. 19 (1984), 45-54.
  10. J. Hagemmann, On regular and weakly regular congruences, preprint 75, TH Darmstadt, 1973.
  11. P. M. Idziak, Varieties with decidable finite algebras I: Linearity, Algebra Universalis 26 (1989), 234-246.
  12. J. K. Kabziński and A. Wroński, On equivalential algebras, in: Proc. 1975 Internat. Sympos. on Multiple-Valued Logic (Indiana University, Bloomington, Ind., 1975), IEEE Comput. Soc., Long Beach, Calif., 1975, 419-428.
  13. E. Kiss, Definable principal congruences in congruence distributive varieties, Algebra Universalis 21 (1985), 213-224.
  14. P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, ibid. 11 (1980), 213-219.
  15. R. McKenzie, Paraprimal varieties: A study of finite axiomatizability and definable principal congruences, ibid. 8 (1978), 336-348.
  16. A. F. Pixley, Principal congruence formulas in arithmetical varieties, in: Lecture Notes in Math. 1149, Springer, 1985, 238-254.
  17. G. E. Simons, Varieties of rings with definable principal congruences, Proc. Amer. Math. Soc. 87 (1983), 367-402.
  18. A. Wroński, On the free equivalential algebra with three generators, Bull. Sec. Logic Polish Acad. Sci. 22 (1993), 37-39.
Pages:
225-238
Main language of publication
English
Received
1996-05-28
Accepted
1997-01-13
Published
1998
Exact and natural sciences