ArticleOriginal scientific text

Title

The spectral mapping theorem for the essential approximate point spectrum

Authors 1

Affiliations

  1. Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Keywords

semi-Fredholm operators, essential spectrum

Bibliography

  1. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
  2. B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32.
  3. H. Heuser, Funktionalanalysis, 3rd ed., Teubner, 1992.
  4. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
  5. W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61-64.
  6. K. K. Oberai, Spectral mapping theorems for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373.
  7. C. Pearcy, Some Recent Developments in Operator Theory, CBMS Regional Conf. Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
  8. V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 5 (1981), 389-391.
  9. V. Rakočević, On the essential approximate point spectrum, II, ibid. 36 (1984), 89-97.
  10. V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
  11. M. Schechter, On the essential spectrum of an arbitrary operator, I, J. Math. Anal. Appl. 13 (1966), 205-215.
  12. C. Schmoeger, Ascent, descent and the Atkinson region in Banach algebras, II, Ricerche Mat. 42 (1993), 249-264.
  13. B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.
Pages:
167-176
Main language of publication
English
Received
1996-05-30
Published
1998
Exact and natural sciences