ArticleOriginal scientific text
Title
The spectral mapping theorem for the essential approximate point spectrum
Authors 1
Affiliations
- Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany
Keywords
semi-Fredholm operators, essential spectrum
Bibliography
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32.
- H. Heuser, Funktionalanalysis, 3rd ed., Teubner, 1992.
- T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
- W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61-64.
- K. K. Oberai, Spectral mapping theorems for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373.
- C. Pearcy, Some Recent Developments in Operator Theory, CBMS Regional Conf. Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
- V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 5 (1981), 389-391.
- V. Rakočević, On the essential approximate point spectrum, II, ibid. 36 (1984), 89-97.
- V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
- M. Schechter, On the essential spectrum of an arbitrary operator, I, J. Math. Anal. Appl. 13 (1966), 205-215.
- C. Schmoeger, Ascent, descent and the Atkinson region in Banach algebras, II, Ricerche Mat. 42 (1993), 249-264.
- B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.