ArticleOriginal scientific text

Title

Compensation couples and isoperimetric estimates for vector fields

Authors 1, 2

Affiliations

  1. Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, I-40127 Bologna, Italy
  2. Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A.

Bibliography

  1. [C] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306.
  2. [CDG] L. Capogna, D. Danielli and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203-215.
  3. [CW] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, 1971, 1-158.
  4. [CUN] D. Cruz-Uribe, SFO, and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), 2941-2960.
  5. [FP] C. Fefferman and D. H. Phong, Subelliptic eigenvalue estimates, in: Conference on Harmonic Analysis in Honor of A. Zygmund, Chicago, 1980, W. Beckner et al. (eds.), Wadsworth, 1981, 590-606.
  6. [F] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158.
  7. [FGaW1] B. Franchi, S. Gallot et R. L. Wheeden, Inégalités isopérimétriques pour des métriques dégénérées, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 651-654.
  8. [FGaW2] B. Franchi, S. Gallot et R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571.
  9. [FGuW] B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604.
  10. [FLW] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604.
  11. [G] M. Gromov, Carnot-Carathéodory spaces seen from within, Prépublications de l'IHES (1994).
  12. [H] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Grundlehren Math. Wiss. 256, Springer, Berlin, 1983.
  13. [NSW] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147.
  14. [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.
Pages:
9-27
Main language of publication
English
Received
1996-09-30
Published
1997
Exact and natural sciences