ArticleOriginal scientific text

Title

On lower semicontinuity of multiple integrals

Authors 1

Affiliations

  1. Institute of Mathematics, University of Warsaw, Banacha 2, 00-097 Warszawa, Poland

Abstract

We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional ΩF(x,u,u)dx. The proofs are based on arguments from the theory of Young measures.

Bibliography

  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145.
  2. L. Ambrosio, New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Mat. Natur. 105 (1987), 1-42.
  3. J. M. Ball, A version of the fundamental theorem for Young measures, in: PDE's and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod (eds.), Lecture Notes in Phys. 344, Springer, Berlin, 1989.
  4. J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.
  5. J. M. Ball and F. Murat, Remarks on Chacon's Biting Lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663.
  6. J. M. Ball and K. W. Zhang, Lower semicontinuity of multiple integrals and the Biting Lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 367-379.
  7. B. Bojarski, Remarks on some geometric properties of Sobolev mappings, in: Functional Analysis and Related Topics, S. Koshi (ed.), World Scientific, Singapore, 1991, 65-76.
  8. B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92.
  9. A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, ibid. 20 (1961), 171-225.
  10. B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989.
  11. M. Esteban, A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys. 105 (1986), 571-591.
  12. L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CMBS Regional Conf. Ser. in Math. 74, Amer. Math. Soc., Providence, R.I., 1990.
  13. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
  14. A. D. Ioffe, On lower semicontinuity of integral functionals, I, II, SIAM J. Control Optim. 15 (1977), 521-538, 991-1000.
  15. D. Kinderlehrer and P. Pedregal, Characterisation of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), 329-365.
  16. D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. (to appear).
  17. J. Kristensen, Lower semicontinuity of variational integrals, Ph.D. Thesis, Mathematical Institute, The Technical University of Denmark, 1994.
  18. F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645-651.
  19. P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), 1-28.
  20. N. G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational functionals of any order, Trans. Amer. Math. Soc. 119 (1965), 125-149.
  21. J. Michael and W. Ziemer, A Lusin type approximation of Sobolev functions by smooth functions, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 135-167.
  22. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
  23. M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.
  24. K. Zhang, Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 345-365.
Pages:
71-78
Main language of publication
English
Received
1996-04-01
Accepted
1996-11-27
Published
1997
Exact and natural sciences