ArticleOriginal scientific text

Title

On Pascal's triangle modulo p2

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Canisius College, Buffalo, New York 14208, U.S.A.
  2. Department of Mathematics and Statistics, Okanagan University College, Kelowna, British Columbia, Canada V1V 1V7
  3. Department of Mathematics and Statistics, Carleton University Ottawa, Ontario Canada K1S 5B6

Keywords

binomial coefficients

Bibliography

  1. K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83.
  2. E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105.
  3. J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 9), Acta Arith. 78 (1997), 331-349.
  4. G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (N.S.) 9 (1968), 1-12.
  5. E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.
  6. D. Singmaster, Notes on binomial coefficients I - a generalization of Lucas' congruence, J. London Math. Soc. (2) 8 (1974), 545-548.
  7. W. A. Webb, The number of binomial coefficients in residue classes modulo p and p2, Colloq. Math. 60/61 (1990), 275-280.
Pages:
157-165
Main language of publication
English
Received
1996-06-27
Accepted
1997-01-02
Published
1997
Exact and natural sciences