ArticleOriginal scientific text
Title
Cesàro summability of one- and two-dimensional trigonometric-Fourier series
Authors 1
Affiliations
- Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary
Abstract
We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from to then it is also bounded from the classical Hardy space to (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from to (3/4 < p ≤ ∞) and is of weak type . We define the two-dimensional dyadic hybrid Hardy space and verify that the maximal operator of the Cesàro means of a two-dimensional function is of weak type . So we deduce that the two-parameter Cesàro means of a function converge a.e. to the function in question.
Keywords
p-atom, Hardy spaces, Cesàro summability, atomic decomposition, p-quasilocal operator, interpolation
Bibliography
- C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129 Academic Press, New York, 1988.
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class
, Trans. Amer. Math. Soc. 157 (1971), 137-153. - R. R. Coifman, A real variable characterization of
, Studia Math. 51 (1974), 269-274. - R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- P. Duren, Theory of
Spaces, Academic Press, New York, 1970. - R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1, Springer, Berlin, 1982.
- R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
- C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between
spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. - C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-194. - N. J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558-591.
- N. Fujii, A maximal inequality for
-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116. - B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc. 75, Providence, R.I., 1989.
- J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
- F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140.
- N. M. Rivière and Y. Sagher, Interpolation between
and , the real method, J. Funct. Anal. 14 (1973), 401-409. - F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189-195.
- F. Schipp and P. Simon, On some
-type maximal inequalities with respect to the Walsh-Paley system, in: Functions, Series, Operators, Budapest, 1980, Colloq. Math. Soc. János Bolyai 35, North-Holland, Amsterdam, 1981, 1039-1045. - E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
- F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242.
- F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.