ArticleOriginal scientific text

Title

Tame minimal non-polynomial growth simply connected algebras

Authors 1, 2

Affiliations

  1. Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany
  2. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Bibliography

  1. I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450.
  2. M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46.
  3. R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220.
  4. K. Bongartz, Algebras and quadratic forms, ibid. 28 (1983), 461-469.
  5. K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136.
  6. M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179.
  7. P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565.
  8. Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258.
  9. P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105.
  10. D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243.
  11. S. M. Khoroshkin, Irreducible representations of Lorentz groups, Funktsional Anal. i Prilozhen. 15 (2) (1981), 50-60 (in Russian); English transl.: Functional Anal. Appl. 15 (2) (1981), 114-122.
  12. R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth strongly simply connected algebras, in: Representations of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 519-538.
  13. I. Reiten and C. Riedtmann, Skew group algebras in the representation theory of artin algebras, J. Algebra 92 (1985), 224-282.
  14. C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 137-287.
  15. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  16. D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, Amsterdam, 1992.
  17. D. Simson, Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 33-38.
  18. A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Kluwer, Dordrecht, 1994, 309-345.
  19. A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516.
  20. A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447.
  21. A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math., in press.
  22. L. Unger, The concealed algebras of minimal wild herditary algebras, Bayreuth. Math. Schr. 31 (1990), 145-154.
Pages:
301-330
Main language of publication
English
Received
1996-09-13
Accepted
1996-10-30
Published
1997
Exact and natural sciences