[6] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179.
[7] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565.
[8] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258.
[9] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105.
[10] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243.
[11] S. M. Khoroshkin, Irreducible representations of Lorentz groups, Funktsional Anal. i Prilozhen. 15 (2) (1981), 50-60 (in Russian); English transl.: Functional Anal. Appl. 15 (2) (1981), 114-122.
[12] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth strongly simply connected algebras, in: Representations of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 519-538.
[13] I. Reiten and C. Riedtmann, Skew group algebras in the representation theory of artin algebras, J. Algebra 92 (1985), 224-282.
[14] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 137-287.
[15] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[16] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, Amsterdam, 1992.
[17] D. Simson, Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 33-38.
[18] A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Kluwer, Dordrecht, 1994, 309-345.
[19] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516.
[20] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447.
[21] A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math., in press.
[22] L. Unger, The concealed algebras of minimal wild herditary algebras, Bayreuth. Math. Schr. 31 (1990), 145-154.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv73i2p301bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.