ArticleOriginal scientific text

Title

On rationality of Jacobi sums

Authors 1, 1

Affiliations

  1. Graduate School of Mathematics, Kyushu University, Fukuoka 812, Japan

Bibliography

  1. R. F. Coleman, The Gross-Koblitz formula, Adv. Stud. Pure Math. 12 (1987), 21-52.
  2. H. Davenport und H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
  3. M. Ishibashi, H. Sato and K. Shiratani, On the Hasse invariants of elliptic curves, Kyushu J. Math. 48 (1994), 307-321.
  4. T. Ito, H. Ishibashi, A. Munemasa and M. Yamada, The Terwilliger algebras of cyclotomic schemes and rationality of Jacobi sums, in: Algebraic Combinatorics (Fukuoka 1993), 43-44.
  5. N. Koblitz, p-adic Analysis: a Short Course on Recent Works, Cambridge University Press, Cambridge, 1980.
  6. C. G. Schmidt, Die Relationenfaktorgruppen von Stickelberger-Elementen und Kreiszahlen, J. Reine Angew. Math. 315 (1980), 60-72.
  7. L. G. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
  8. K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Combin. Theory 1 (1966), 476-489.
  9. K. Yamamoto, The gap group of multiplicative relationships of Gaussian sums, Sympos. Math. 15 (1975), 427-440.
Pages:
251-260
Main language of publication
English
Received
1996-09-24
Published
1997
Exact and natural sciences