ArticleOriginal scientific text
Title
On the Witt rings of function fields of quasihomogeneous varieties
Authors 1
Affiliations
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Keywords
Witt rings, graded rings, selfdual vector bundles, quasihomogeneous varieties, residue homomorphisms
Bibliography
- N. Bourbaki, Commutative Algebra, Hermann, 1972.
- F. Fernández-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann. 277 (1987), 453-468.
- R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
- P. Jaworski, About the Witt rings of function fields of algebroid quadratic quasihomogeneous surfaces, Math. Z. 218 (1995), 319-342.
- P. Jaworski, About the Milnor's K-theory of function fields of quasihomogeneous cones, K-Theory 10 (1996), 83-105.
- M. Knebusch, Symmetric bilinear forms over algebraic varieties, in: Conference on Quadratic Forms (Kingston 1976), Queen's Papers in Pure and Appl. Math. 46 1977, 102-283.
- T. Y. Lam, Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass., 1973.
- J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer, Berlin, 1973.
- M. Ojanguren, The Witt Group and the Problem of Lüroth, ETS Editrice Pisa, 1990.
- W. Pardon, A relation between Witt group of a regular local ring and the Witt groups of its residue class fields, preprint.
- W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin, 1985.
- P. Wagreich, The structure of quasihomogeneous singularities, in: Singularities, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 593-611.