ArticleOriginal scientific text

Title

Wild tilted algebras revisited

Authors 1

Affiliations

  1. Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225 Düsseldorf, Germany

Bibliography

  1. M. Auslander and S. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454.
  2. W. Crawley-Boevey and O. Kerner, A functor between categories of regular modules for wild hereditary algebras, Math. Ann. 298 (1994), 481-487.
  3. W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.
  4. D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
  5. D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23-28.
  6. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  7. M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 427-439.
  8. M. Hoshino, Modules without self-extensions and Nakayama's conjecture, Arch. Math. (Basel) 43 (1984), 493-500.
  9. O. Kerner, Tilting wild algebras, J. London Math. Soc. (2) 39 (1989), 29-47.
  10. O. Kerner, Universal exact sequences for torsion theories, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 317-326.
  11. O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37-57.
  12. O. Kerner and F. Lukas, Regular modules over wild hereditary algebras, in: Representations of Finite-Dimensional Algebras, H. Tachikawa and V. Dlab (eds.), Proc. ICRA V, CMS Conf. Proc. 11, 1991, 191-208.
  13. H. Lenzing and J. A. de la Peña, Wild canonical algebras, Math. Z., to appear.
  14. H. Meltzer, Auslander-Reiten componentes for concealed-canonical algebras, Colloq. Math. 71 (1996), 183-202.
  15. C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255.
  16. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  17. H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66.
  18. A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 385-395.
Pages:
67-81
Main language of publication
English
Received
1996-04-09
Accepted
1996-07-03
Published
1997
Exact and natural sciences