ArticleOriginal scientific text

Title

On rings whose flat modules form a Grothendieck category

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Murcia, 30100 Murcia, Spain
  2. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Bibliography

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1992.
  2. P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16.
  3. M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
  4. K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 115-135.
  5. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
  6. J. L. García and J. Martínez, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152.
  7. J. L. García and J. Martínez, When is the category of flat modules abelian?, Fund. Math. 147 (1995), 83-91.
  8. J. L. García and J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), 39-56.
  9. J. Gómez Torrecillas, Rings whose flat modules are torsionfree, Ph.D. Thesis, University of Granada, 1992.
  10. J. Gómez Torrecillas, FTF rings, preprint.
  11. J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542.
  12. M. Hoshino and S. Takashima, On Lambek torsion theories II, ibid. 31 (1994), 729-746.
  13. C. U. Jensen and H. Lenzing, Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon & Breach, 1989.
  14. C. U. Jensen and D. Simson, Purity and generalized chain conditions, J. Pure Appl. Algebra 14 (1979), 297-305.
  15. S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29.
  16. M. G. Leeney, LLI rings and modules of type LP, Comm. Algebra 20 (1992), 943-953.
  17. L. H. Rowen, Finitely presented modules over semiperfect rings, Proc. Amer. Math. Soc. 97 (1986), 1-7.
  18. L. H. Rowen, Finitely presented modules over semiperfect rings satisfying ACC-∞, J. Algebra 107 (1987), 284-291.
  19. D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380.
  20. D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116.
  21. D. Simson, On pure semisimple Grothendieck categories I, ibid. 100 (1978), 211-222.
  22. D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992.
  23. J. P. Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455-472.
  24. B. Stenström, Rings of Quotients, Springer, Berlin, 1975.
  25. H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413.
  26. R. Wisbauer, Foundations of Module and Ring Theory, Algebra Logic Appl. 3, Gordon & Breach, 1991.
  27. K. Yamagata, Frobenius algebras, in: Handbook of Algebra, M. Hazewinkel, (ed.), Vol. 1, North-Holland, Amsterdam, 1996, 841-887.
Pages:
115-141
Main language of publication
English
Received
1996-08-26
Published
1997
Exact and natural sciences