ArticleOriginal scientific text
Title
On rings whose flat modules form a Grothendieck category
Authors 1, 2
Affiliations
- Department of Mathematics, University of Murcia, 30100 Murcia, Spain
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliography
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1992.
- P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16.
- M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
- K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 115-135.
- P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- J. L. García and J. Martínez, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152.
- J. L. García and J. Martínez, When is the category of flat modules abelian?, Fund. Math. 147 (1995), 83-91.
- J. L. García and J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), 39-56.
- J. Gómez Torrecillas, Rings whose flat modules are torsionfree, Ph.D. Thesis, University of Granada, 1992.
- J. Gómez Torrecillas, FTF rings, preprint.
- J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542.
- M. Hoshino and S. Takashima, On Lambek torsion theories II, ibid. 31 (1994), 729-746.
- C. U. Jensen and H. Lenzing, Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon & Breach, 1989.
- C. U. Jensen and D. Simson, Purity and generalized chain conditions, J. Pure Appl. Algebra 14 (1979), 297-305.
- S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29.
- M. G. Leeney, LLI rings and modules of type LP, Comm. Algebra 20 (1992), 943-953.
- L. H. Rowen, Finitely presented modules over semiperfect rings, Proc. Amer. Math. Soc. 97 (1986), 1-7.
- L. H. Rowen, Finitely presented modules over semiperfect rings satisfying ACC-∞, J. Algebra 107 (1987), 284-291.
- D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380.
- D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116.
- D. Simson, On pure semisimple Grothendieck categories I, ibid. 100 (1978), 211-222.
- D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992.
- J. P. Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455-472.
- B. Stenström, Rings of Quotients, Springer, Berlin, 1975.
- H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413.
- R. Wisbauer, Foundations of Module and Ring Theory, Algebra Logic Appl. 3, Gordon & Breach, 1991.
- K. Yamagata, Frobenius algebras, in: Handbook of Algebra, M. Hazewinkel, (ed.), Vol. 1, North-Holland, Amsterdam, 1996, 841-887.