Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 72 | 2 | 281-303

Tytuł artykułu

Degenerations in the Module Varieties of Generalized Standard Auslander-Reiten Components

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

Słowa kluczowe

Rocznik

Tom

72

Numer

2

Strony

281-303

Opis fizyczny

Daty

wydano
1997
otrzymano
1996-01-12
poprawiono
1996-05-19

Twórcy

  • Faculty of Mathematics and Computer Science, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Bibliografia

  • [1] S. Abeasis and A. del Fra, Degenerations for the representations of a quiver of type $𝔸_m$, J. Algebra 93 (1985), 376-412.
  • [2] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331.
  • [3] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61.
  • [4] I. Assem and A. Skowroński, Multicoil algebras, in: Representations of Algebras, CMS Conf. Proc. 14 (1993), 29-68.
  • [5] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995), 453-478.
  • [6] M. Auslander, Representation theory of finite dimensional algebras, in: Contemp. Math. 13, Amer. Math. Soc., 1982, 27-39.
  • [7] M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), 280-301.
  • [8] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, 1995.
  • [9] K. Bongartz, On a result of Bautista and Smalø, Comm. Algebra 11 (1983), 2123-2124.
  • [10] K. Bongartz, A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21 (1989), 255-256.
  • [11] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. in Math., to appear.
  • [12] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 69 (1994), 575-611.
  • [13] K. Bongartz, Degenerations for representations of tame quivers, Ann. Sci. Ecole Norm. Sup. 28 (1995), 647-668.
  • [14] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294.
  • [15] H. Kraft, Geometric methods in representation theory, in: Representations of Algebras, Lecture Notes in Math. 944, Springer, 1982, 180-258.
  • [16] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. 45 (1992), 32-54.
  • [17] S. Liu, Semistable components of an Auslander-Reiten quiver, ibid. 47 (1993), 405-416.
  • [18] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. Ecole Norm. Sup. 4 (1986), 275-301.
  • [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  • [20] A. Skowroński, Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math. 30 (1993), 515-527.
  • [21] A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO ASI Ser. C 424, Kluwer Acad. Publ., Dordrecht, 1994, 309-345.
  • [22] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543.
  • [23] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 173-183.
  • [24] A. Skowroński, Tame algebras with simply connected Galois coverings, preprint, Toruń, 1995.
  • [25] A. Skowroński and G. Zwara, On degenerations of modules with nondirecting indecomposable summands, Canad. J. Math., in press.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-cmv72i2p281bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.