ArticleOriginal scientific text

Title

Sidon sets and Riesz sets for some measure algebras on the disk

Authors 1, 2

Affiliations

  1. Département de Mathématique, Institut de Recherche Mathématique Avancée, Université Louis Pasteur, 67100 Strasbourg, France
  2. Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, Missouri 63121, U.S.A.

Abstract

Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.

Keywords

disk polynomials, bivariate polynomials, Riesz sets, hypergroups, Sidon sets

Bibliography

  1. [AT74] H. Annabi et K. Trimèche, Convolution généralisée sur le disque unité, C. R. Acad. Sci. Paris 278 (1974), 21-24.
  2. [BG91] M. Bouhaik and L. Gallardo, A Mehler-Heine formula for disk polynomials, Indag. Math. 1 (1991), 9-18.
  3. [BG92] M. Bouhaik and L. Gallardo, Un théorème limite central dans un hypergroupe bidimensionnel, Ann. Inst. H. Poincaré 28 (1992), 47-61.
  4. [BH95] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20, de Gruyter, Berlin, New York, 1995.
  5. [CS92] W. C. Connett and A. L. Schwartz, Fourier analysis off groups, in: The Madison Symposium on Complex Analysis (Providence, R.I.), A. Nagel and L. Stout (eds.), Contemp. Math. 137, Amer. Math. Soc. 1992, 169-176.
  6. [CS95] W. C. Connett and A. L. Schwartz, Continuous 2-variable polynomial hypergroups, in: Applications of Hypergroups and Related Measure Algebras (Providence, R.I.), O. Gebuhrer, W. C. Connett and A. L. Schwartz (eds.), Contemp. Math. 183, Amer. Math. Soc., 1995, 89-109.
  7. [Edw67] R. E. Edwards, Fourier Series, Vols. I, II, Holt, Rinehart and Winston, New York, 1967.
  8. [HK93] H. Heyer and S. Koshi, Harmonic Analysis on the Disk Hypergroup, Mathematical Seminar Notes, Tokyo Metropolitan University, 1993.
  9. [Kan76] Y. Kanjin, A convolution measure algebra on the unit disc, Tôhoku Math. J. (2) 28 (1976), 105-115.
  10. [Kan85] Y. Kanjin, Banach algebra related to disk polynomials, ibid. 37 (1985), 395-404.
  11. [Koo72] T. H. Koornwinder, The addition formula for Jacobi polynomials, II, the Laplace type integral representation and the product formula, Tech. Report TW 133/72, Mathematisch Centrum, Amsterdam, 1972.
  12. [Koo78] T. H. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114.
  13. [Rud62] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962.
  14. [Sze67] G. Szegő, Orthogonal Polynomials, 2nd ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 1967.
Pages:
269-279
Main language of publication
English
Received
1995-08-30
Accepted
1996-04-22
Published
1997
Exact and natural sciences