PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 72 | 2 | 215-222
Tytuł artykułu

Topological algebras with an orthogonal total sequence

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is an investigation of topological algebras with an orthogonal sequence which is total. Closed prime ideals or closed maximal ideals are kernels of multiplicative functionals and the continuous multiplicative functionals are given by the "coefficient functionals". Our main result states that an orthogonal total sequence in a unital Fréchet algebra is already a Schauder basis. Further we consider algebras with a total sequence $(x_n)_{n∈ℕ}$ satisfying $x^2_n=x_n$ and $x_n x_{n+1} = x_{n+1}$ for all n ∈ ℕ.
Rocznik
Tom
72
Numer
2
Strony
215-222
Opis fizyczny
Daty
wydano
1997
otrzymano
1995-11-03
Twórcy
  • Fachbereich Mathematik, Universität Duisburg, Lotharstr. 65, D-47057 Duisburg, Federal Republic of Germany
Bibliografia
  • [1] M. Akkar, M. El Azhari and M. Oudadess, Continuité des caractères dans les algèbres de Fréchet à bases, Canad. Math. Bull. 31 (1988), 168-174.
  • [2] R. M. Brooks, A ring of analytic functions, Studia Math. 24 (1964), 191-210.
  • [3] R. M. Brooks, A ring of analytic functions, II, ibid. 39 (1971), 199-208.
  • [4] R. Brück and J. Müller, Invertible elements in a convolution algebra of holomorphic functions, Math. Ann. 294 (1992), 421-438.
  • [5] R. Brück and J. Müller, Closed ideals in a convolution algebra of holomorphic functions, Canad. J. Math. 47 (1995), 915-928.
  • [6] S. El-Helaly and T. Husain, Orthogonal bases are Schauder bases and a characterization of Φ-algebras, Pacific J. Math. 132 (1988), 265-275.
  • [7] S. El-Helaly and T. Husain, Orthogonal bases characterizations of the Banach algebras $l_1$ and $c_0$, Math. Japon. 37 (1992), 649-655.
  • [8] H. Goldmann, Uniform Fréchet Algebras, North-Holland, Amsterdam, 1990.
  • [9] T. Husain, Positive functionals on topological algebras with bases, Math. Japon. 28 (1983), 683-687.
  • [10] T. Husain and J. Liang, Multiplicative functionals on Fréchet algebras with bases, Canad. J. Math. 29 (1977), 270-276.
  • [11] T. Husain and S. Watson, Topological algebras with orthogonal bases, Pacific J. Math. 91 (1980), 339-347.
  • [12] T. Husain and S. Watson, Algebras with unconditional orthogonal bases, Proc. Amer. Math. Soc. 79 (1980), 539-545.
  • [13] H. Render and A. Sauer, Algebras of holomorphic functions with Hadamard multiplication, Studia Math. 118 (1996), 77-100.
  • [14] S. W. Warsi and T. Husain, Pil-algebras, Math. Japon. 36 (1991), 983-986.
  • [15] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, 1973.
  • [16] W. Żelazko, Metric generalizations of Banach algebras, Dissertationes Math. 47 (1965).
  • [17] W. Żelazko, Functional continuity of commutative m-convex $B_0$-algebras with countable maximal ideal spaces, Colloq. Math. 51 (1987), 395-399.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv72i2p215bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.