ArticleOriginal scientific text
Title
On some singular integral operatorsclose to the Hilbert transform
Authors 1, 1, 1
Affiliations
- Facultad de Matemática, Astronomía y Física UNC, Ciudad Universitaria, 5000 Córdoba, Argentina
Abstract
Let m: ℝ → ℝ be a function of bounded variation. We prove the -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by where for a family of functions satisfying conditions (1.1)-(1.3) given below.
Bibliography
- [D-R] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators, Invent. Math. 84 (1986), 541-561.
- T. Godoy, L. Saal and M. Urciuolo, About certain singular kernels
, Math. Scand. 74 (1994), 98-110. - [G-U] T. Godoy and M. Urciuolo, About the
-boundedness of integral operators with kernels of the form , Math. Scand., to appear. - [R-S] F. Ricci and P. Sjögren, Two parameter maximal functions in the Heisenberg group, Math Z. 199 (1988), 565-575.
- [S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.