ArticleOriginal scientific text

Title

On some singular integral operatorsclose to the Hilbert transform

Authors 1, 1, 1

Affiliations

  1. Facultad de Matemática, Astronomía y Física UNC, Ciudad Universitaria, 5000 Córdoba, Argentina

Abstract

Let m: ℝ → ℝ be a function of bounded variation. We prove the Lp()-boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by Tmf(x)=p.v.k(x-y)m(x+y)f(y)dy where k(x)=j2jφj(2jx) for a family of functions {φj}j satisfying conditions (1.1)-(1.3) given below.

Bibliography

  1. [D-R] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators, Invent. Math. 84 (1986), 541-561.
  2. T. Godoy, L. Saal and M. Urciuolo, About certain singular kernels K(x,y)=K1(x-y)K2(x+y), Math. Scand. 74 (1994), 98-110.
  3. [G-U] T. Godoy and M. Urciuolo, About the Lp-boundedness of integral operators with kernels of the form K1(x-y)K2(x+y), Math. Scand., to appear.
  4. [R-S] F. Ricci and P. Sjögren, Two parameter maximal functions in the Heisenberg group, Math Z. 199 (1988), 565-575.
  5. [S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
Pages:
9-17
Main language of publication
English
Received
1995-07-10
Accepted
1996-03-26
Published
1997
Exact and natural sciences