ArticleOriginal scientific text

Title

Estimates for simple random walks on fundamental groups of surfaces

Authors 1, 2, 3, 1

Affiliations

  1. Section de Mathématiques, Université de Genève, C.P. 240, CH-1211 Genève 24, Switzerland
  2. Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
  3. Dipartimento di Matematica Pura e Applicatai, Università degli Studi dell'Aquila, Via Vetoio I-67100, L'Aquila, Italy

Abstract

Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.

Keywords

simple random walk, surface group, spectral radius

Bibliography

  1. [Can] J. W. Cannon, The growth of the closed surface groups and compact hyperbolic Coxeter groups, circulated typescript, University of Wisconsin, 1980.
  2. [Car] D. I. Cartwright, Some examples of random walks on free products of discrete groups, Ann. Mat. Pura Appl. 151 (1988), 1-15.
  3. [CaM] D. I. Cartwright and W. Młotkowski, Harmonic analysis for groups acting on triangle buildings, J. Austral. Math. Soc. Ser. A 56 (1994), 345-383.
  4. [Cha] C. Champetier, Propriétés statistiques des groupes de présentation finie, Adv. in Math. 116 (1995), 197-262.
  5. [ChM] B. Chandler and W. Magnus, The History of Combinatorial Group Theory: a Case Study in the History of Ideas, Springer, 1982.
  6. [ChV] P. A. Cherix and A. Valette, On spectra of simple random walks on one-relator groups, Pacific J. Math., to appear.
  7. [CdV] Y. Colin de Verdière, Spectres de graphes, prépublication, Grenoble, 1995.
  8. [DoK] J. Dodziuk and L. Karp, Spectra and function theory for combinatorial Laplacians, in: Contemp. Math. 73, Amer. Math. Soc., 1988, 25-40.
  9. [FP] W. J. Floyd and S. P. Plotnick, Symmetries of planar growth functions, Invent. Math. 93 (1988), 501-543.
  10. [Har] T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc. 8 (1957), 937-942.
  11. [Ke1] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354.
  12. [Ke2] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156.
  13. [LyS] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, 1977.
  14. [Nag] T. Nagnibeda, An estimate from above of spectral radii of random walks on surface groups, Sbornik Seminarov POMI, A. Vershik (ed.), to appear.
  15. [Pas] W. B. Paschke, Lower bound for the norm of a vertex-transitive graph, Math. Zeit. 213 (1993), 225-239.
  16. [Pru] W. E. Pruitt, Eigenvalues of non-negative matrices, Ann. Math. Statist. 35 (1964), 1797-1800.
  17. [Ser] C. Series, The infinite word problem and limit sets of Fuchsian groups, Ergodic Theory Dynam. Systems 1 (1981) 337-360.
  18. [Sul] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential. Geom. 25 (1987), 327-351.
  19. [Wag] P. Wagreich, The growth function of a discrete group, in: Lecture Notes in Math. 956, Springer, 1982, 125-144.
  20. [Woe] W. Woess, Random walks on infinite graphs and groups - a survey on selected topics, Bull. London Math. Soc. 26 (1994), 1-60.
  21. [Żuk] A. Żuk, A remark on the norm of a random walk on surface groups, this volume, 195-206.
Pages:
173-193
Main language of publication
English
Received
1996-07-22
Accepted
1996-08-12
Published
1997
Exact and natural sciences