ArticleOriginal scientific text

Title

Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures

Authors 1, 2

Affiliations

  1. Mathematical Institute, Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
  2. Department of Mathematics, Faculty of Science, Rua Ernesto de Vasconcelos, Bloco C1, Piso 3, 1700 Lisboa, Portugal

Keywords

invariant measures, mixing, stochastic semilinear equations, ergodicity

Bibliography

  1. L. Arnold, R. F. Curtain and P. Kotelenez, Nonlinear stochastic evolution equations in Hilbert space, Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen 1980.
  2. A. Chojnowska-Michalik and B. Gołdys, Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces, Probab. Theory Related Fields 102 (1995), 331-356.
  3. G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation, preprint Scuola Normale Superiore Pisa no. 5/1994.
  4. G. Da Prato, D. Elworthy and J. Zabczyk, Strong Feller property for stochastic semilinear equations, Stochastic Anal. Appl. 13 (1993), 35-45.
  5. G. Da Prato and D. Gątarek, Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep. 52 (1995), 29-41.
  6. G. Da Prato, D. Gątarek and J. Zabczyk, Invariant measures for semilinear stochastic equations, Stochastic Anal. Appl. 10 (1992), 387-408.
  7. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
  8. G. Da Prato and J. Zabczyk, Non-explosion, boundedness and ergodicity for stochastic semilinear equations, J. Differential Equations 98 (1992), 181-195.
  9. F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys. 171 (1995), 119-141.
  10. A. Friedman, Stochastic Differential Equations and Applications, Vol. I, Academic Press, New York, 1975.
  11. M. Fuhrman, Densities of Gaussian measures and regularity of non-symmetric Ornstein-Uhlenbeck semigroups in Hilbert spaces, IMPAN, Warszawa, Preprint 528 (1994).
  12. D. Fujiwara, Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 82-86.
  13. D. Gątarek and B. Gołdys, On solving stochastic equation by the change of drift with application to optimal control, in: Stochastic PDE's and Applications, Proceedings, Pitman, 1992, 180-190.
  14. D. Gątarek and B. Gołdys, On invariant measures for diffusions on Banach spaces, Potential Anal., to appear.
  15. B. Gołdys, On some regularity properties of solutions to stochastic evolution equations in Hilbert spaces, Colloq. Math. 58 (1990), 327-338.
  16. S. Jacquot and G. Royer, Ergodicity of stochastic plates, Probab. Theory Related Fields, submitted.
  17. S. Jacquot and G. Royer, Ergodicité d'une classe d'équations aux dérivées partielles stochastiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 231-236.
  18. G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199-211.
  19. R. Z. Khas'minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solutions to the Cauchy problem for parabolic equations, Theory Probab. Appl. 5 (1960), 179-196.
  20. P. Kotelenez, A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics 21 (1987), 345-358.
  21. A. Lasota, Statistical stability of deterministic systems, in: Proceedings Würzburg 1982, Lecture Notes in Math. 1017, Springer, Berlin, 1983, 386-419.
  22. A. Lasota and M. C. Mackey, Chaos, fractals, and noise, Springer, New York, 1994.
  23. A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384.
  24. G. Leha and G. Ritter, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep. 48 (1994), 195-225.
  25. R. Manthey and B. Maslowski, Qualitative behaviour of solutions of stochastic reaction-diffusion equations, Stochastic Process. Appl. 43 (1992), 265-289.
  26. B. Maslowski, On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics Stochastics Rep. 45 (1993), 17-44.
  27. B. Maslowski, An application of l-condition in the theory of stochastic differential equations, Časopis Pěst. Mat. 112 (1987), 296-307.
  28. B. Maslowski, Strong Feller property for semilinear stochastic evolution equations and applications, in: Proc. Jabłonna 1988, Lecture Notes in Control and Inform. Sci. 136, Springer, Berlin, 1989, 210-225.
  29. B. Maslowski and J. Seidler, Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math. 31 (1994), 965-1003.
  30. S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995), 157-172.
  31. J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Math. Bohem. 118 (1993), 67-106.
  32. J. Seidler, Ergodic behaviour of stochastic parabolic equations, Czechoslovak Math. J., to appear.
  33. I. Simão, Regular transition densities for infinite dimensional diffusions, Stochastic Anal. Appl. 11 (1993), 309-336.
  34. I. Simão, A conditioned Ornstein-Uhlenbeck process on a Hilbert space, ibid. 9 (1991), 85-98.
  35. I. Simão, Pinned Ornstein-Uhlenbeck processes on an infinite dimensional space, Preprint CMAF, University of Lisbon, 1995.
Pages:
147-171
Main language of publication
English
Received
1995-10-30
Accepted
1996-05-29
Published
1997
Exact and natural sciences