PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 72 | 1 | 123-146
Tytuł artykułu

On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
72
Numer
1
Strony
123-146
Opis fizyczny
Daty
wydano
1997
otrzymano
1995-08-10
poprawiono
1996-05-13
Twórcy
  • Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
  • [1] I. Assem and A. Skowroński, On tame repetitive algebras, Fund. Math. 142 (1993), 59-84.
  • [2] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
  • [3] M. Auslander and I. Reiten, Representation theory of artin algebras III, Comm. Algebra 3 (1975), 239-294.
  • [4] M. Auslander and I. Reiten, Representation theory of artin algebras VI, ibid. 6 (1978), 257-300.
  • [5] K. Bongartz, Tilted algebras, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 26-38.
  • [6] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
  • [7] G. d'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201.
  • [8] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1-71.
  • [9] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 68-105.
  • [10] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Lecture Notes in Math. 1177, Springer, Berlin, 1986, 156-180.
  • [11] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  • [12] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
  • [13] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
  • [14] L. Peng and J. Xiao, Invariability of repetitive algebras of tilted algebras under stable equivalence, J. Algebra 170 (1994), 54-68.
  • [15] Z. Pogorzały, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint, Toruń, 1994.
  • [16] Z. Pogorzały and A. Skowroński, Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra 181 (1996), 95-111.
  • [17] C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham Symposium 1985, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1986, 7-79.
  • [18] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
  • [19] A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76.
  • [20] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165.
  • [21] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv72i1p123bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.