ArticleOriginal scientific text

Title

On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras

Authors 1

Affiliations

  1. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Bibliography

  1. I. Assem and A. Skowroński, On tame repetitive algebras, Fund. Math. 142 (1993), 59-84.
  2. I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
  3. M. Auslander and I. Reiten, Representation theory of artin algebras III, Comm. Algebra 3 (1975), 239-294.
  4. M. Auslander and I. Reiten, Representation theory of artin algebras VI, ibid. 6 (1978), 257-300.
  5. K. Bongartz, Tilted algebras, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 26-38.
  6. P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
  7. G. d'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201.
  8. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1-71.
  9. P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 68-105.
  10. D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Lecture Notes in Math. 1177, Springer, Berlin, 1986, 156-180.
  11. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  12. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
  13. J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
  14. L. Peng and J. Xiao, Invariability of repetitive algebras of tilted algebras under stable equivalence, J. Algebra 170 (1994), 54-68.
  15. Z. Pogorzały, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint, Toruń, 1994.
  16. Z. Pogorzały and A. Skowroński, Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra 181 (1996), 95-111.
  17. C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham Symposium 1985, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1986, 7-79.
  18. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
  19. A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76.
  20. H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165.
  21. T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.
Pages:
123-146
Main language of publication
English
Received
1995-08-10
Accepted
1996-05-13
Published
1997
Exact and natural sciences