ArticleOriginal scientific text
Title
Spectra for Gelfand pairs associated with the Heisenberg group
Authors 1, 2, 1, 2
Affiliations
- Department of Mathematics, and Computer Science, University of Missouri-St. Louis, St. Louis, Missouri 63121, U.S.A.
- Deptartment of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222, U.S.A.
Abstract
Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group . We say that is a Gelfand pair when the set of integrable K-invariant functions on is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for can be identified with the set of bounded K-spherical functions on . In this paper, we study the natural topology on given by uniform convergence on compact subsets in . We show that is a complete metric space and that the 'type 1' K-spherical functions are dense in . Our main result shows that one can embed quite explicitly in a Euclidean space by mapping a spherical function to its eigenvalues with respect to a certain finite set of ( )-invariant differential operators on . This viewpoint on the spectrum for was previously known for K=U(n) and is referred to as 'the Heisenberg fan'.
Bibliography
- C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116.
- C. Benson, J. Jenkins and G. Ratcliff, Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal. 105 (1992), 409-443.
- C. Benson and G. Ratcliff, A classification for multiplicity free actions, J. Algebra 181 (1996), 152-186.
- P. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup. 14 (1981), 403-432.
- G. Carcano, A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital. Ser. B (7) (1987), 1091-1105.
- J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 305-317.
- J. Faraut, Analyse harmonique et fonctions spéciales, in: J. Faraut et K. Harzallah, Deux courses d'analyse harmonique, Progr. Math. 69, Birkhäuser, Boston, 1987, 1-151.
- G. Folland, Harmonic Analysis in Phase Space, Ann. Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989.
- R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer, New York, 1988.
- R. Godement, A theory of spherical functions I, Trans. Amer. Math. Soc. 73 (1962), 496-556.
- S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
- R. Howe and T. Umeda, The Capelli identity, the double commutant theorem and multiplicity-free actions, Math. Ann. 290 (1991), 565-619.
- A. Hulanicki and F. Ricci, A tauberian theorem and tangential convergence of bounded harmonic functions on balls in
, Invent. Math. 62 (1980), 325-331. - V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213.
- M. Naimark, Normed Rings, Noordhoff, Groningen, 1964.
- A. l. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer, New York, 1990.
- R. Strichartz,
harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350-406. - E. G. F. Thomas, An infinitesimal characterization of Gelfand pairs, in: Proc. Conf. in Modern Analysis and Probability in honor of Shizuo Kakutani, New Haven, Conn., 1982, Contemp. Math. 26, Amer. Math. Soc., Providence, R.I., 1984, 379-385.
- Z. Yan, Special functions associated with multiplicity-free representations, preprint.