ArticleOriginal scientific text

Title

Spectra for Gelfand pairs associated with the Heisenberg group

Authors 1, 2, 1, 2

Affiliations

  1. Department of Mathematics, and Computer Science, University of Missouri-St. Louis, St. Louis, Missouri 63121, U.S.A.
  2. Deptartment of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222, U.S.A.

Abstract

Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group Hn. We say that (K,Hn) is a Gelfand pair when the set L1_K(Hn) of integrable K-invariant functions on Hn is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for L1_K(Hn) can be identified with the set Δ(K,Hn) of bounded K-spherical functions on Hn. In this paper, we study the natural topology on Δ(K,Hn) given by uniform convergence on compact subsets in Hn. We show that Δ(K,Hn) is a complete metric space and that the 'type 1' K-spherical functions are dense in Δ(K,Hn). Our main result shows that one can embed Δ(K,Hn) quite explicitly in a Euclidean space by mapping a spherical function to its eigenvalues with respect to a certain finite set of (KHn)-invariant differential operators on Hn. This viewpoint on the spectrum for Δ(K,Hn) was previously known for K=U(n) and is referred to as 'the Heisenberg fan'.

Bibliography

  1. C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116.
  2. C. Benson, J. Jenkins and G. Ratcliff, Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal. 105 (1992), 409-443.
  3. C. Benson and G. Ratcliff, A classification for multiplicity free actions, J. Algebra 181 (1996), 152-186.
  4. P. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup. 14 (1981), 403-432.
  5. G. Carcano, A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital. Ser. B (7) (1987), 1091-1105.
  6. J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 305-317.
  7. J. Faraut, Analyse harmonique et fonctions spéciales, in: J. Faraut et K. Harzallah, Deux courses d'analyse harmonique, Progr. Math. 69, Birkhäuser, Boston, 1987, 1-151.
  8. G. Folland, Harmonic Analysis in Phase Space, Ann. Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989.
  9. R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer, New York, 1988.
  10. R. Godement, A theory of spherical functions I, Trans. Amer. Math. Soc. 73 (1962), 496-556.
  11. S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
  12. R. Howe and T. Umeda, The Capelli identity, the double commutant theorem and multiplicity-free actions, Math. Ann. 290 (1991), 565-619.
  13. A. Hulanicki and F. Ricci, A tauberian theorem and tangential convergence of bounded harmonic functions on balls in n, Invent. Math. 62 (1980), 325-331.
  14. V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213.
  15. M. Naimark, Normed Rings, Noordhoff, Groningen, 1964.
  16. A. l. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer, New York, 1990.
  17. R. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350-406.
  18. E. G. F. Thomas, An infinitesimal characterization of Gelfand pairs, in: Proc. Conf. in Modern Analysis and Probability in honor of Shizuo Kakutani, New Haven, Conn., 1982, Contemp. Math. 26, Amer. Math. Soc., Providence, R.I., 1984, 379-385.
  19. Z. Yan, Special functions associated with multiplicity-free representations, preprint.
Pages:
305-328
Main language of publication
English
Received
1996-03-01
Published
1996
Exact and natural sciences