ArticleOriginal scientific text

Title

Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces

Authors 1, 1

Affiliations

  1. Dipartimento di Matematica, Unversità degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

Keywords

rearrangement invariant Banach function spaces, Schrödinger and wave equations, Fourier transform, multipliers

Bibliography

  1. C. Bennett, Banach function spaces and interpolation methods III. Hausdorff-Young estimates, J. Approx. Theory 13 (1975), 267-275.
  2. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
  3. J. J. F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. 13 (1985), 1-21.
  4. L. Hörmander, Estimates for translation invariant operators on Lp spaces, Acta Math. 104 (1960), 93-140.
  5. C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
  6. V. Lebedev and A. Olevskiĭ, C1 changes of variables: Beurling-Helson type theorem and Hörmander conjecture on Fourier multipliers, Geom. Funct. Anal. 4 (1994), 213-235.
  7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
  8. W. Littman, The wave operator and Lp norms, J. Math. Mech. 12 (1963), 55-68.
  9. D. Müller and A. Seeger, Inequalities for spherically symmetric solutions of the wave equation, Math. Z. 218 (1995), 417-426.
  10. R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714.
  11. P. Szeptycki, Some remarks on the extended domain of Fourier transform, Bull. Amer. Math. Soc. 73 (1967), 398-402.
Pages:
273-286
Main language of publication
English
Received
1996-01-03
Published
1996
Exact and natural sciences