ArticleOriginal scientific text
Title
Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces
Authors 1, 1
Affiliations
- Dipartimento di Matematica, Unversità degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
Keywords
rearrangement invariant Banach function spaces, Schrödinger and wave equations, Fourier transform, multipliers
Bibliography
- C. Bennett, Banach function spaces and interpolation methods III. Hausdorff-Young estimates, J. Approx. Theory 13 (1975), 267-275.
- C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
- J. J. F. Fournier and J. Stewart, Amalgams of
and , Bull. Amer. Math. Soc. 13 (1985), 1-21. - L. Hörmander, Estimates for translation invariant operators on
spaces, Acta Math. 104 (1960), 93-140. - C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
- V. Lebedev and A. Olevskiĭ,
changes of variables: Beurling-Helson type theorem and Hörmander conjecture on Fourier multipliers, Geom. Funct. Anal. 4 (1994), 213-235. - J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
- W. Littman, The wave operator and
norms, J. Math. Mech. 12 (1963), 55-68. - D. Müller and A. Seeger, Inequalities for spherically symmetric solutions of the wave equation, Math. Z. 218 (1995), 417-426.
- R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714.
- P. Szeptycki, Some remarks on the extended domain of Fourier transform, Bull. Amer. Math. Soc. 73 (1967), 398-402.