ArticleOriginal scientific text
Title
Quasi-commutative polynomial algebras and the power property of 2 × 2 quantum matrices
Authors 1
Affiliations
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliography
- E. Corrigan, D. B. Fairlie, P. Fletcher and R. Sasaki, Some aspects of quantum groups and supergroups, J. Math. Phys. 31 (1990), 776-780.
- H. Ewen, O. Ogievetsky and J. Wess, Quantum matrices in two dimensions, Lett. Math. Phys. 22 (1991), 297-305.
- B. A. Kupershmidt, The quantum group
, J. Phys. A 25 (1992), L1239-L1244. - Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Université de Montréal, 1988.
- Yu. I. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991.
- E. E. Mukhin, Quantum de Rham complexes, Comm. Algebra 22 (1994), 451-498.
- O. Ogievetsky and J. Wess, Relations between
's, Z. Phys. C 50 (1991), 123-131. - A. Sudbery, Consistent multiparameter quantisation of GL(n), J. Phys. A 23 (1990), L697-L704.
- T. Umeda and M. Wakayama, Powers of 2 × 2 quantum matrices, Comm. Algebra 21 (1993), 4461-4465.
- S. Vokos, J. Wess and B. Zumino, Analysis of the basic matrix representation of
, Z. Phys. C 48 (1990), 65-74.