ArticleOriginal scientific text
Title
Quasi-tilted algebras of canonical type
Authors 1, 2
Affiliations
- Fachbereich Mathematik-Informatik, Universität-GH Paderborn, D-33095 Paderborn, Germany
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, PL-87-100 Toruń, Poland
Bibliography
- I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452.
- F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc., to appear.
- F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82.
- W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.
- W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.
- D. Happel, Triangulated Categories and the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University Press, Cambridge, 1988.
- D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
- D. Happel and C. M. Ringel, Tilted agebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
- O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
- O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37-57.
- H. Lenzing, Wild canonical algebras and rings of automorphic forms, in: V. Dlab and L. L. Scott (eds.), Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Springer, 1994, 191-212.
- H. Lenzing, Hereditary noetherian categories with a tilting complex, preprint, 1994.
- H. Lenzing, A K-theoretic study of canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 433-454.
- H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in Representations of Algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14, 1993, 313-337.
- H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 455-473.
- H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear.
- H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, preprint, 1995.
- S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416.
- H. Meltzer, Auslander-Reiten components for concealed-canonical algebras, this issue, 183-202.
- C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- A. Skowroński, Tame quasi-tilted algebras, preprint, 1996.
- A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 641-657.
- H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66.