ArticleOriginal scientific text

Title

Quasi-tilted algebras of canonical type

Authors 1, 2

Affiliations

  1. Fachbereich Mathematik-Informatik, Universität-GH Paderborn, D-33095 Paderborn, Germany
  2. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, PL-87-100 Toruń, Poland

Bibliography

  1. I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
  2. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452.
  3. F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc., to appear.
  4. F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82.
  5. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.
  6. W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.
  7. D. Happel, Triangulated Categories and the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University Press, Cambridge, 1988.
  8. D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
  9. D. Happel and C. M. Ringel, Tilted agebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  10. O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
  11. O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37-57.
  12. H. Lenzing, Wild canonical algebras and rings of automorphic forms, in: V. Dlab and L. L. Scott (eds.), Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Springer, 1994, 191-212.
  13. H. Lenzing, Hereditary noetherian categories with a tilting complex, preprint, 1994.
  14. H. Lenzing, A K-theoretic study of canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 433-454.
  15. H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in Representations of Algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14, 1993, 313-337.
  16. H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 455-473.
  17. H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear.
  18. H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, preprint, 1995.
  19. S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416.
  20. H. Meltzer, Auslander-Reiten components for concealed-canonical algebras, this issue, 183-202.
  21. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  22. A. Skowroński, Tame quasi-tilted algebras, preprint, 1996.
  23. A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 641-657.
  24. H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66.
Pages:
161-181
Main language of publication
English
Received
1995-10-24
Published
1996
Exact and natural sciences