ArticleOriginal scientific text
Title
Schatten classes and commutators on simple martingales
Authors 1, 2
Affiliations
- Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115-2403, U.S.A.
- Department of Mathematics, Peking University, Beijing 100871, People's Republic of China
Bibliography
- J. Bergh and T. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976.
- D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
- J.-A. Chao, Conjugate characterizations of
dyadic martingales, Math. Ann. 240 (1979), 63-67. - J.-A. Chao, Hardy spaces and regular martingales, in: Lecture Notes in Math. 939, Springer, 1982, 18-28.
- J.-A. Chao, J. E. Daly and H. Ombe, Factorizations of Hardy spaces of simple martingales, Tamkang J. Math. 19 (4) (1988), 57-65.
- J.-A. Chao and S. Janson, A note on
q-martingales, Pacific J. Math. 97 (1981), 307-317. - J.-A. Chao and R. L. Long, Martingale transforms with unbounded multipliers, Proc. Amer. Math. Soc. 114 (1992), 831-838.
- J.-A. Chao and H. Ombe, Commutators on dyadic martingales, Proc. Japan Acad. Ser. A 61 (1985), 35-38.
- J.-A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257.
- S. Janson, BMO and commutators of martingale transforms, Ann. Inst. Fourier (Grenoble) 31 (1) (1981), 265-270.
- S. Janson, Characterizations of
by singular integral transforms on martingales and , Math. Scand. 41 (1977), 140-152. - S. Janson and J. Peetre, Higher order commutators of singular integral operators, in: Lecture Notes in Math. 1070, Springer, 1984, 125-142.
- S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504.
- S. Janson and T. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310.
- J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Press, Durham, 1976.
- V. V. Peller, Hankel operators of class
and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR-Sb. 41 (1982), 443-479. - V. V. Peller, Description of Hankel operators of class
for p>0, investigation of the rate of rational approximation, and other applications, ibid. 50 (1985), 465-494. - L. Peng, On the compactness of paracommutators, Ark. Mat. 26 (1988), 315-325.
- L. Peng, Paracommutators of Schatten-von Neumann class
, 0 - L. Peng, Wavelets and paracommutators, Ark. Mat. 31 (1993), 83-99.
- K. Phillips and M. H. Taibleson, Singular integrals in several variables over a local field, Pacific J. Math. 30 (1969), 209-231.
- R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306.
- H. Triebel, Theory of Function Spaces, Birkhäuser, 1985.
- A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978), 163-171.