ArticleOriginal scientific text

Title

Schatten classes and commutators on simple martingales

Authors 1, 2

Affiliations

  1. Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115-2403, U.S.A.
  2. Department of Mathematics, Peking University, Beijing 100871, People's Republic of China

Bibliography

  1. J. Bergh and T. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976.
  2. D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
  3. J.-A. Chao, Conjugate characterizations of H1 dyadic martingales, Math. Ann. 240 (1979), 63-67.
  4. J.-A. Chao, Hardy spaces and regular martingales, in: Lecture Notes in Math. 939, Springer, 1982, 18-28.
  5. J.-A. Chao, J. E. Daly and H. Ombe, Factorizations of Hardy spaces of simple martingales, Tamkang J. Math. 19 (4) (1988), 57-65.
  6. J.-A. Chao and S. Janson, A note on H1 q-martingales, Pacific J. Math. 97 (1981), 307-317.
  7. J.-A. Chao and R. L. Long, Martingale transforms with unbounded multipliers, Proc. Amer. Math. Soc. 114 (1992), 831-838.
  8. J.-A. Chao and H. Ombe, Commutators on dyadic martingales, Proc. Japan Acad. Ser. A 61 (1985), 35-38.
  9. J.-A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257.
  10. S. Janson, BMO and commutators of martingale transforms, Ann. Inst. Fourier (Grenoble) 31 (1) (1981), 265-270.
  11. S. Janson, Characterizations of H1 by singular integral transforms on martingales and n, Math. Scand. 41 (1977), 140-152.
  12. S. Janson and J. Peetre, Higher order commutators of singular integral operators, in: Lecture Notes in Math. 1070, Springer, 1984, 125-142.
  13. S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504.
  14. S. Janson and T. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310.
  15. J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Press, Durham, 1976.
  16. V. V. Peller, Hankel operators of class Sp and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR-Sb. 41 (1982), 443-479.
  17. V. V. Peller, Description of Hankel operators of class Sp for p>0, investigation of the rate of rational approximation, and other applications, ibid. 50 (1985), 465-494.
  18. L. Peng, On the compactness of paracommutators, Ark. Mat. 26 (1988), 315-325.
  19. L. Peng, Paracommutators of Schatten-von Neumann class Sp, 0
  20. L. Peng, Wavelets and paracommutators, Ark. Mat. 31 (1993), 83-99.
  21. K. Phillips and M. H. Taibleson, Singular integrals in several variables over a local field, Pacific J. Math. 30 (1969), 209-231.
  22. R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306.
  23. H. Triebel, Theory of Function Spaces, Birkhäuser, 1985.
  24. A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978), 163-171.
Pages:
7-11
Main language of publication
English
Received
1995-05-17
Published
1996
Exact and natural sciences