ArticleOriginal scientific text

Title

Pełczyński's Property (V) on spaces of vector-valued functions

Authors 1

Affiliations

  1. Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712-1082 U.S.A.

Bibliography

  1. F. Bombal, On l1 subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), 107-112.
  2. F. Bombal, On (V) sets and Pełczynski's property (V), Glasgow Math. J. 32 (1990), 109-120.
  3. J. Bourgain, H is a Grothendieck space, Studia Math. 75 (1983), 193-216.
  4. J. Bourgain, On weak compactness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), 111-118.
  5. P. Cembranos, N. J. Kalton, E. Saab and P. Saab, Pełczyński's property (V) on C(, E) spaces, Math. Ann. 271 (1985), 91-97.
  6. D. L. Cohn, Measure Theory, Birkhäuser, 1980.
  7. F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294.
  8. J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
  9. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
  10. N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
  11. G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1990), 307-318.
  12. A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 1969.
  13. S. V. Kisliakov, Uncomplemented uniform algebras, Mat. Zametki 18 (1975), 91-96 (in Russian).
  14. J. Munkres, Topology. A First Course, Prentice-Hall, Englewood Cliffs, N.J. 1975.
  15. A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648.
  16. H. Pfitzner, Weak compactness in the dual of a C-algebra is determined commutatively, Math. Ann. 298 (1994), 349-371.
  17. N. Randrianantoanina, Complemented copies of l1 and Pełczyński's property (V) in Bochner spaces, Canad. J. Math., to appear.
  18. H. P. Rosenthal, A characterization of Banach spaces containing c0, J. Amer. Math. Soc. 7 (1994), 707-747.
  19. W. Ruess, Duality and geometry of spaces of compact operators, in: North-Holland Math. Stud. 90, North-Holland, 1984, 59-78.
  20. E. Saab and P. Saab, Stability problems in Banach spaces, in: Lecture Notes in Pure and Appl. Math. 136, Dekker, 1992, 367-394.
  21. Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
  22. M. Talagrand, Weak Cauchy sequences in L1(E), Amer. J. Math. 106 (1984), 703-724.
  23. A. Ulger, Weak compactness in L1(μ,X), Proc. Amer. Math. Soc. 113 (1991), 143-149.
Pages:
63-78
Main language of publication
English
Received
1995-01-30
Accepted
1995-09-26
Published
1996
Exact and natural sciences