ArticleOriginal scientific text
Title
Pełczyński's Property (V) on spaces of vector-valued functions
Authors 1
Affiliations
- Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712-1082 U.S.A.
Bibliography
- F. Bombal, On
subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), 107-112. - F. Bombal, On
sets and Pełczynski's property , Glasgow Math. J. 32 (1990), 109-120. - J. Bourgain,
is a Grothendieck space, Studia Math. 75 (1983), 193-216. - J. Bourgain, On weak compactness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), 111-118.
- P. Cembranos, N. J. Kalton, E. Saab and P. Saab, Pełczyński's property (V) on C(, E) spaces, Math. Ann. 271 (1985), 91-97.
- D. L. Cohn, Measure Theory, Birkhäuser, 1980.
- F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294.
- J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1990), 307-318.
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 1969.
- S. V. Kisliakov, Uncomplemented uniform algebras, Mat. Zametki 18 (1975), 91-96 (in Russian).
- J. Munkres, Topology. A First Course, Prentice-Hall, Englewood Cliffs, N.J. 1975.
- A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648.
- H. Pfitzner, Weak compactness in the dual of a
-algebra is determined commutatively, Math. Ann. 298 (1994), 349-371. - N. Randrianantoanina, Complemented copies of
and Pełczyński's property in Bochner spaces, Canad. J. Math., to appear. - H. P. Rosenthal, A characterization of Banach spaces containing
, J. Amer. Math. Soc. 7 (1994), 707-747. - W. Ruess, Duality and geometry of spaces of compact operators, in: North-Holland Math. Stud. 90, North-Holland, 1984, 59-78.
- E. Saab and P. Saab, Stability problems in Banach spaces, in: Lecture Notes in Pure and Appl. Math. 136, Dekker, 1992, 367-394.
- Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
- M. Talagrand, Weak Cauchy sequences in
, Amer. J. Math. 106 (1984), 703-724. - A. Ulger, Weak compactness in
, Proc. Amer. Math. Soc. 113 (1991), 143-149.