ArticleOriginal scientific text

Title

An extension of an inequality due to Stein and Lepingle

Authors 1

Affiliations

  1. Department of Numerical Analysis, L. Eötvös University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

Hardy spaces consisting of adapted function sequences and generated by the q-variation and by the conditional q-variation are considered. Their dual spaces are characterized and an inequality due to Stein and Lepingle is extended.

Bibliography

  1. N. Asmar and S. Montgomery-Smith, Littlewood-Paley theory on solenoids, Colloq. Math. 65 (1993), 69-82.
  2. D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42.
  3. C. Dellacherie and P.-A. Meyer, Probabilities and Potential B, North-Holland Math. Stud. 72, North-Holland, 1982.
  4. A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
  5. C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199-215.
  6. C. Herz, Hp-spaces of martingales, 0 < p ≤ 1, Z. Wahrsch. Verw. Gebiete 28 (1974), 189-205.
  7. D. Lepingle, Quelques inégalités concernant les martingales, Studia Math. 59 (1976), 63-83.
  8. D. Lepingle, Une inégalite de martingales, in: Séminaire de Probabilités XII, Lecture Notes in Math. 649, Springer, Berlin, 1978, 134-137.
  9. E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970.
  10. F. Weisz, Duality results and inequalities with respect to Hardy spaces containing function sequences, J. Theor. Probab. 9 (1996), 301-316.
  11. F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  12. F. Weisz, Martingale operators and Hardy spaces generated by them, Studia Math. 114 (1995), 39-70.
Pages:
55-61
Main language of publication
English
Received
1995-09-26
Published
1996
Exact and natural sciences