ArticleOriginal scientific text
Title
Calculs de dimensions de packing
Authors 1
Affiliations
- Faculté des Sciences de Monastir, Département de Mathématiques, 5019 Monastir, Tunisie
Keywords
multifractal, dimension, packing
Bibliography
- T. Bedford, Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, 17-26.
- P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
- G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790.
- B. Mandelbrot, Multifractal measures, especially for the geophysicist, in: Fractals in Geophysics, Birkhäuser, Basel, 1989, 5-42.
- B. Mandelbrot, A class of multinomial multifractal measures with negative
latent value for the dimension , Fractals' Physical Origin and Properties (Erice, 1988), L. Pietro- nero (ed.), Plenum, New York, 1989, 3-29. - B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, in: Soviet-American Chaos Meeting (Woods Hole, 1989), K. Ford and D. Campbell (eds.), Amer. Inst. Phys., 1990, 79-90.
- B. Mandelbrot, Limit lognormal multifractal measures, in: Frontiers of Physics: Landau Memorial Conference (Tel Aviv, 1988), E. Gotsman (ed.), Pergamon, New York, 1989, 91-122.
- B. Mandelbrot, New 'anomalous' multiplicative multifractals: left sided
and the modeling of DLA, Phys. A 168 (1990), 95-111. - B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Exactly self-similar 'left-sided' multifractal measures, Phys. Rev. A, to appear.
- L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196.
- J. Peyrière, Multifractal measures, in: Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), J. Byrnes (ed.), Kluwer Acad. Publ., 1992, 175-186.
- C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980.
- C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74.