ArticleOriginal scientific text

Title

Calculs de dimensions de packing

Authors 1

Affiliations

  1. Faculté des Sciences de Monastir, Département de Mathématiques, 5019 Monastir, Tunisie

Keywords

multifractal, dimension, packing

Bibliography

  1. T. Bedford, Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, 17-26.
  2. P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
  3. G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790.
  4. B. Mandelbrot, Multifractal measures, especially for the geophysicist, in: Fractals in Geophysics, Birkhäuser, Basel, 1989, 5-42.
  5. B. Mandelbrot, A class of multinomial multifractal measures with negative (latent) value for the dimension f(α), Fractals' Physical Origin and Properties (Erice, 1988), L. Pietro- nero (ed.), Plenum, New York, 1989, 3-29.
  6. B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, in: Soviet-American Chaos Meeting (Woods Hole, 1989), K. Ford and D. Campbell (eds.), Amer. Inst. Phys., 1990, 79-90.
  7. B. Mandelbrot, Limit lognormal multifractal measures, in: Frontiers of Physics: Landau Memorial Conference (Tel Aviv, 1988), E. Gotsman (ed.), Pergamon, New York, 1989, 91-122.
  8. B. Mandelbrot, New 'anomalous' multiplicative multifractals: left sided f(α) and the modeling of DLA, Phys. A 168 (1990), 95-111.
  9. B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Exactly self-similar 'left-sided' multifractal measures, Phys. Rev. A, to appear.
  10. L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196.
  11. J. Peyrière, Multifractal measures, in: Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), J. Byrnes (ed.), Kluwer Acad. Publ., 1992, 175-186.
  12. C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980.
  13. C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74.
Pages:
137-148
Main language of publication
French
Received
1994-12-22
Accepted
1995-12-21
Published
1996
Exact and natural sciences