ArticleOriginal scientific text

Title

Continuous extensions of spectral measures

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Tasmania, Hobart, Tasmania 7001, Australia
  2. School of Mathematics, University of New South Wales, Sydney, N.S.W. 2052, Australia

Bibliography

  1. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  2. P. G. Dodds and and B. de Pagter, Orthomorphisms and Boolean algebras of projections, Math. Z. 187 (1984), 361-381.
  3. P. G. Dodds and W. J. Ricker, Spectral measures and the Bade reflexivity theorem, J. Funct. Anal. 61 (1985), 136-163.
  4. N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Wiley-Interscience, New York, 1958.
  5. N. Dunford and J. T. Schwartz, Linear Operators III: Spectral Operators, Wiley-Interscience, New York, 1972.
  6. I. Kluvánek and G. Knowles, Vector Measures and Control Systems, North-Holland, Amsterdam, 1975.
  7. G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, Springer, Heidelberg, 1969.
  8. G. Köthe, Topological Vector Spaces II, Grundlehren Math. Wiss. 237, Springer, New York, 1979.
  9. D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165.
  10. S. Okada and W. J. Ricker, Spectral measures which fail to be equicontinuous, Period. Math. Hungar. 28 (1994), 55-61.
  11. S. Okada and W. J. Ricker, Vector measures and integration in non-complete spaces, Arch. Math. (Basel) 63 (1994), 344-353.
  12. S. Okada and W. J. Ricker, The range of the integration map of a vector measure, ibid. 64 (1995), 512-522.
  13. E. G. Ostling and A. Wilansky, Locally convex topologies and the convex compactness property, Proc. Cambridge Philos. Soc. 75 (1974), 45-50.
  14. W. J. Ricker, Closed spectral measures in Fréchet spaces, Internat. J. Math. Math. Sci. 7 (1984), 15-21.
  15. W. J. Ricker, Remarks on completeness in spaces of linear operators, Bull. Austral. Math. Soc. 34 (1986), 25-35.
  16. W. J. Ricker, Completeness of the L1-space of closed vector measures, Proc. Edinburgh Math. Soc. 33 (1990), 71-78.
  17. W. J. Ricker, Uniformly closed algebras generated by Boolean algebras of projections in locally convex spaces, Canad. J. Math. 34 (1987), 1123-1146.
  18. W. J. Ricker and H. H. Schaefer, The uniformly closed algebra generated by a complete Boolean algebra of projections, Math. Z. 201 (1989), 429-439.
  19. B. Walsh, Structure of spectral measures on locally convex spaces, Trans. Amer. Math. Soc. 120 (1965), 295-326.
Pages:
115-132
Main language of publication
English
Received
1995-04-10
Accepted
1995-11-20
Published
1996
Exact and natural sciences