ArticleOriginal scientific text
Title
Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
Authors 1
Affiliations
- Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
Abstract
We prove that minimizers of the functional , ⊂ , n ≥ 3, which satisfy the Dirichlet boundary condition on for g: → with zero topological degree, converge in and for any α<1 - upon passing to a subsequence - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.
Bibliography
- F. Bethuel, H. Brezis et F. Hélein, Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris 314 (1992) 891-895.
- F. Bethuel, H. Brezis et F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations and PDE 1 (1993), 123-148.
- F. Bethuel, H. Brezis et F. Hélein, Tourbillons de Ginzburg-Landau et energie renormalisée, C. R. Acad. Sci. Paris 317 (1993), 165-171.
- F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau Vortices, Progr. Nonlinear Differential Equations Appl. 13, Birkhäuser, Boston, 1994.
- F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60-75.
- B. Bojarski and T. Iwaniec, p-harmonic equation and quasiregular mappings, in: Banach Center Publ. 19, PWN, Warszawa, 1987, 25-38.
- E. DiBenedetto and A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 349 (1984), 83-128.
- M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983.
- Z. Han and Y. Li, Degenerate elliptic systems and applications to Ginzburg-Landau type equations, I, preprint, Rutgers University, 1995.
- R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystals theory, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985-1986), Pitman Res. Notes Math. Ser. 181, Longman Sci. Tech., 1988, 276-289.
- R. Hardt, D. Kinderlehrer and F. H. Lin, The variety of configurations of static liquid crystals, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), Variational Methods, Birkhäuser, 1990, 115-131.
- M. C. Hong, Asymptotic behavior for minimizers of a Ginzburg-Landau functional in higher dimensions associated with n-harmonic maps, preprint, 1995.
- K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240.