ArticleOriginal scientific text
Title
Finite cyclic groups and the k-HFD property
Authors 1, 2
Affiliations
- Department of Mathematics, Trinity University, 715 Stadium Drive, San Antonio, Texas 78212-7200, U.S.A.
- Department of Mathematics, The University of North Carolina, at Chapel Hill, Chapel Hill, North Carolina 27599-3250, U.S.A.
Bibliography
- D. F. Anderson, S. T. Chapman and W. W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96 (1994), 97-112.
- L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11 (1960), 391-392.
- S. T. Chapman, The davenport constant, the cross number, and their application in factorization theory, in: Zero-Dimensional Commutative Rings, Marcel Dekker, New York, 1995, 167-190.
- S. T. Chapman and W. W. Smith, Factorization in Dedekind domains with finite class group, Israel J. Math. 71 (1990), 65-95.
- S. T. Chapman and W. W. Smith, On the HFD, CHFD, and k-HFD properties in Dedekind domains, Comm. Algebra 20 (1992), 1955-1987.
- S. T. Chapman and W. W. Smith, On the k-HFD property in Dedekind domains with small class group, Mathematika 39 (1992), 330-340.
- A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
- A. Geroldinger and F. Halter-Koch, Non-unique factorizations in block semigroups and arithmetical applications, Math. Slovaca 42 (1992), 641-661.
- U. Krause and C. Zahlten, Arithmetic in Krull monoids and the cross number of divisor class groups, Mitt. Math. Ges. Hamburg 12 (1991), 681-696.
- W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330.