ArticleOriginal scientific text

Title

Finite cyclic groups and the k-HFD property

Authors 1, 2

Affiliations

  1. Department of Mathematics, Trinity University, 715 Stadium Drive, San Antonio, Texas 78212-7200, U.S.A.
  2. Department of Mathematics, The University of North Carolina, at Chapel Hill, Chapel Hill, North Carolina 27599-3250, U.S.A.

Bibliography

  1. D. F. Anderson, S. T. Chapman and W. W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96 (1994), 97-112.
  2. L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11 (1960), 391-392.
  3. S. T. Chapman, The davenport constant, the cross number, and their application in factorization theory, in: Zero-Dimensional Commutative Rings, Marcel Dekker, New York, 1995, 167-190.
  4. S. T. Chapman and W. W. Smith, Factorization in Dedekind domains with finite class group, Israel J. Math. 71 (1990), 65-95.
  5. S. T. Chapman and W. W. Smith, On the HFD, CHFD, and k-HFD properties in Dedekind domains, Comm. Algebra 20 (1992), 1955-1987.
  6. S. T. Chapman and W. W. Smith, On the k-HFD property in Dedekind domains with small class group, Mathematika 39 (1992), 330-340.
  7. A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
  8. A. Geroldinger and F. Halter-Koch, Non-unique factorizations in block semigroups and arithmetical applications, Math. Slovaca 42 (1992), 641-661.
  9. U. Krause and C. Zahlten, Arithmetic in Krull monoids and the cross number of divisor class groups, Mitt. Math. Ges. Hamburg 12 (1991), 681-696.
  10. W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330.
Pages:
219-226
Main language of publication
English
Received
1995-07-10
Published
1996
Exact and natural sciences