ArticleOriginal scientific text

Title

CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions

Authors 1

Affiliations

  1. Department of Mathematics, Akita National College of Technology, 1-1, Bunkyo-cho Iijima, Akita 011, Japan

Abstract

We consider a Riemannian submersion π: M → N, where M is a CR-submanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by ω = 0 and give a necessary and sufficient condition for M to be a Sasakian manifold.

Bibliography

  1. R. L. Bishop and S. I. Goldberg, On the topology of positively curved Kaehler manifolds II, Tôhoku Math. J. 17 (1965), 310-318.
  2. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
  3. D. E. Blair and B. Y. Chen, On CR-submanifolds of Hermitian manifolds, Israel J. Math. 34 (1979), 353-363.
  4. B. Y. Chen and L. Vanhecke, Isometric, holomorphic and symplectic reflections, Geom. Dedicata 29 (1989), 259-277.
  5. S. Dragomir, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 98-110.
  6. S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I-II, Geom. Dedicata 28 (1988), 181-197, Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1-11.
  7. S. Kobayashi, Submersions of CR submanifolds, Tôhoku Math. J. 89 (1987), 95-100.
  8. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2, Interscience Publishers, 1963, 1969.
  9. F. Narita, Riemannian submersions and isometric reflections with respect to submanifolds, Math. J. Toyama Univ. 15 (1992), 83-94.
  10. F. Narita, Riemannian submersion with isometric reflections with respect to the fibers, Kodai Math. J. 16 (1993), 416-427.
  11. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 1-20.
  12. R. C. Randell, Generalized Brieskorn manifolds, Bull. Amer. Math. Soc. 80 (1974), 111-115.
  13. T. Takahashi, Deformations of Sasakian structures and its application to the Brieskorn manifolds, Tôhoku Math. J. 30 (1978), 37-43.
  14. Y. Tashiro, On contact structure of hypersurfaces in complex manifolds, I, ibid. 15 (1963), 62-78.
  15. I. Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), 338-351.
  16. I. Vaisman, A theorem on compact locally conformal Kähler manifolds, Proc. Amer. Math. Soc. 75 (1979), 279-283.
  17. I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284.
  18. I. Vaisman, Some curvature properties of locally conformal Kaehler manifolds, Trans. Amer. Math. Soc. (2) 259 (1980), 439-447.
  19. I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255.
  20. K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163-196.
  21. K. Yano and M. Kon, Structures on Manifolds, World Sci., Singapore, 1984.
Pages:
165-179
Main language of publication
English
Received
1995-03-03
Published
1996
Exact and natural sciences